Hydrogen Transport in 34CrMo4 Martensitic Steel: Influence of Microstructural Defects on H Diffusion

Article Preview

Abstract:

The electrochemical permeation technique was used to evaluate the effect of the microstructure on hydrogen diffusivity and hydrogen trapping at room temperature in martensitic steels. A detailed study of the electrochemical permeation technique was first performed in order to identify the boundary conditions of a permeation test in the selected experimental set-up. The validity of the apparent diffusion coefficient derived from this test is also discussed. A 34CrMo4 quenched steel has been selected and designed at three tempering temperatures (200°C, 540°C and 680°C) in order to obtain three different microstructures. According to permeation measurements, H diffusion strongly depends on the microstructure. The material tempered at 540°C exhibits the smallest diffusion coefficient and the largest fraction of reversible traps at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 323-325)

Pages:

485-490

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Sakamoto and K. Takao, Hydrogen in metals Proc. of the 2nd Int. Congress Paris, Pergamon Press Pub., Sec. 1A8, (1977).

Google Scholar

[2] S. Chan, Journal-chinese institute of engineers, vol. 22 (1999) pp.43-57.

Google Scholar

[3] S. Chan, H. Lee, and J Yang, Metal. and Mater. Trans, vol. 22A (1991), pp.2579-2586.

Google Scholar

[4] N. Paravathavarthini, S. Saroja and R.K. Dayal, J. Nucl. Mater, vol. 264 (1999), pp.35-47.

Google Scholar

[5] M.A.V. Devanathan and Z. Stachurski, Proc. R. Soc. London Ser. A 270 (1962), p.90.

Google Scholar

[6] C. Montella, J. of Electroanalytical Chemistry, vol. 465, (1999), pp.37-50.

Google Scholar

[7] L. Nanis and T.K.G. Namboodhiri, J. Electrochem. Soc., vol. 119, (1972), pp.691-694.

Google Scholar

[8] P. Tison, Influence de l'hydrogène sur le comportement des matériaux, in: CEA Service de documentation, Saclay, France (Eds. ), CEA-R-5240 (1), ISSN 0429-3460, (1984).

Google Scholar

[9] R.K. H Song, S.I. Pyun and R. A Oriani, J. Electrochem. Soc., vol. 137, (1990), pp.1703-1706.

Google Scholar

[10] S.I. Pyun and R. A Oriani, Corrosion Science, vol. 29, No. 5, (1989), pp.485-496.

Google Scholar

[11] M.R. Pigott and A.C. Siarkowski, J. Iron Steel Inst., vol. 210, (1972), p.901.

Google Scholar

[12] A. McNabb and P.K. Foster: Trans. TMS-AIME, vol. 227, (1963), p.618.

Google Scholar

[13] A. -M. Brass, F. Guillon and S. Vivet, Metal. and Mater. Trans., vol. 35A, (2004), p.1449.

Google Scholar

[14] J.B. Leblond and D. Dubois, Acta. Metall., vol. 31, (1983), p.1471.

Google Scholar

[15] H.H. Johnson, Metall. Trans. A, vol. 9A, (1988), pp.2371-2387.

Google Scholar