Defect and Diffusion Forum
Vol. 333
Vol. 333
Defect and Diffusion Forum
Vol. 332
Vol. 332
Defect and Diffusion Forum
Vol. 331
Vol. 331
Defect and Diffusion Forum
Vol. 330
Vol. 330
Defect and Diffusion Forum
Vol. 329
Vol. 329
Defect and Diffusion Forum
Vols. 326-328
Vols. 326-328
Defect and Diffusion Forum
Vols. 323-325
Vols. 323-325
Defect and Diffusion Forum
Vol. 322
Vol. 322
Defect and Diffusion Forum
Vol. 321
Vol. 321
Defect and Diffusion Forum
Vols. 319-320
Vols. 319-320
Defect and Diffusion Forum
Vol. 318
Vol. 318
Defect and Diffusion Forum
Vols. 316-317
Vols. 316-317
Defect and Diffusion Forum
Vols. 312-315
Vols. 312-315
Defect and Diffusion Forum Vols. 323-325
Paper Title Page
Abstract: In isothermal oxidation condition, water vapour has little effect on the oxidation rate and scale composition of a nickel-based SY 625 alloy oxidized at 1100°C. The scale is composed of an outer Cr2O3 and an internal CrNbO4 scale. The oxide scale morphology differs between dry and wet conditions. Under dry conditions the oxide scale appears to be compact and chromia pegs are observed at the internal interface. Under wet conditions, porosities are observed spread inside the scale and the chromia grain size is smaller. At this temperature some scale spallation is observed under dry and wet conditions. Under cyclic oxidation conditions the oxide scale adherence is slightly improved in wet environment. The chromia scale is adherent during the 4 first oxidation cycles. In dry air, spallation occured after the first cycle. In dry and wet conditions, after the chromia scale spallation has started, NiO and NiCr2O4 form first. NiMoO4 forms later on the alloy surface during the cycling test. The best resistance of the alloy under thermal cycling conditions under wet conditions is related to the presence of a more plastic and adherent scale owing to a higher scale porosity and smaller chromia grain size compared to dry conditions.
333
Abstract: In order to investigate the role of oxygen diffusion in the oxidation process of the AISI 439 ferritic stainless steel, oxygen ion diffusion coefficients were determined, for the first time, in oxide films formed by the oxidation of this steel. Steel samples were firstly oxidized from 750o C to 900o C, in synthetic air, in order to grow oxide films mainly made up of chrome oxide; the oxygen diffusion experiments were then performed using the stable isotope 18O as oxygen tracer. The introduction of the 18O in the oxide film was performed by means of the gas-solid isotopic exchange method, in the temperature range of 750-900o C, in Ar+21%18O2 atmosphere. The 18O diffusion profiles were established by secondary ion mass spectrometry (SIMS). Parabolic oxidation constants calculated by means of Wagner´s theory, using the oxygen ion diffusion coefficient determined by our experimental process, are greater than oxidation constants previously determined in oxidation experiments from 850 to 950º C, in air, which indicates that the oxygen ion diffusion is large enough to assure the growth rate of the oxide film formed by the oxidation of the AISI 439 steel in these temperatures.
339
Abstract: Oxygen ion diffusion coefficient was measured, for the first time, in oxide films grown by the high temperature oxidation of the AISI 304 austenitic stainless steel. The steel samples were polished and then oxidized in synthetic air in order to grow the chromia oxide (Cr2O3) film. The oxygen diffusion experiments in the oxide films were performed by using the18O isotope as oxygen tracer. The isotope diffusion studies were performed from 750 to 900o C, in Ar +21%18O2 atmosphere and the oxygen ion diffusion profiles were established by secondary ion mass spectrometry (SIMS) analysis. From the18O diffusion profiles, the bulk, effective and grain boundary diffusivities were determined. Using Wagner´s theory, it is shown that, under the used experimental conditions, the oxygen ion diffusion is large enough to assure the growth rate of the chrome oxide films formed by the oxidation of the AISI 304 stainless steel.
345
Abstract: The high temperature corrosion behavior of Si-containing alloys consisting of Cr-Si-Ni and CoNiCrAlY-Si alloys fabricated by spark plasma sintering technique was investigated in the liquid phase of Na2SO4 + 25.7 mass% NaCl at temperatures ranging from 923-1273 K. The purpose of this study is to develop excellent corrosion resistant alloys for coating applications. Our experimental results show the CrSi2 alloy with 10 mass% Ni content and the CoNiCrAlY alloy with 30 mass% Si content are the most promising materials for applications in this atmosphere. This is due to the formation of a protective SiO2 and Al2O3/SiO2 scale, respectively. The formation of a dense and continuous oxide layer composed and/or consisted of SiO2 plays a significant role in hindering the inward diffusion of chlorine and sulfur to the alloys substrate. Particularly, the corrosion mechanism of Cr-Si-Ni alloys and the influence of Ni addition on the corrosion resistance of CrSi2 alloy are discussed in the present paper.
353
Abstract: Phosphoric acid treatment is used as a way to improve the high temperature oxidation resistance of a chromia-forming AISI 304 steel. Chromia-forming steels are excellent candidates to resist to high temperature oxidizing atmospheres because of the formation of protective oxide scales. The oxide scale growth mechanisms are studied by exposing phosphoric acid-treated and untreated 304 steel samples to high temperature conditions in air. The analyses were carried out by means of thermogravimetry, and in situ X-ray diffraction (XRD). The experimental results show that the phosphoric acid treatment does not have a beneficial effect on cyclic high temperature oxidation (up to 70h of the oxidation test) of AISI 304 steel because of growth of a layer mainly formed by external cation diffusion which grows very quickly. The isothermal high temperature oxidation of this steel at 800°C in air shows a very fast initial iron oxidation towards the external interface, allowing to chromium element to be more available to the internal interface to form a continuous chromia layer, thus causing the establishment of a parabolic oxidation regime and leading to a beneficial reduction of the oxidation rate (after 70h of the oxidation test).
359
Abstract: Results Concerning Nickel Aluminisation with Application of Chemical Vapour Deposition Method Are Presented. Two-Step Processing under Investigation Consists of Al Chloride Formation in the Primary Vessel and Al Deposition in the Secondary One. the Initial Gas Stream Is Composed of Hcl Dissolved in H2 at Various Ratios. it Was Shown that the Choice of the [HCl]/[H2] Ratio and the Determination of the Optimum Temperature to Produce Most Preferential β-Nial Phase May Be Done with the Use of Thermodynamic Calculations. the Results Obtained with Application of Factsage Program Confirm Essential Influence of both Initial [HCl]/[H2] Ratio (in the Range between 0,05 and 100) and the Temperature in the Second Vessel (1123 K – 1323 K) on Aluminium Chloride Partial Pressures and Hence Aluminium Content in its Gaseous Donors and at the Substrate Surface (boundary Condition for Interdiffusion in Ni-Al System). it Was Confirmed that β-Nial Growth Is Favoured at Low [HCl]/[H2] Ratios and High Temperatures for which Alcl and AlCl2 Partial Pressures Increase with Respect to that of AlCl3. the Thermodynamic Predictions Remain in Agreement with CVD Experiments. the Presented Thermodynamic Data May Be Used as a Source of Essential Information for Designing Further Experiments in this Field as Well as for Modelling of Solid-State Diffusion in Ni-Al System.
367
Abstract: The use of thermal barrier coating systems allows superalloys to withstand higher operating temperatures in aeroengine turbines. Aiming at providing oxidation protection to such substrates, an aluminum-rich layer is deposited to form the α-Al2O3 scale over which a ceramic layer (i.e. YSZ layer) is applied to provide thermal insulation. A new approach is now being investigated within the FP7 European project « PARTICOAT », in which a single step process is employed by applying micro-sized aluminum particles. The particles are mixed in a binder and deposited by brushing or spraying on the substrate surface. During a heat treatment, the particles sinter and oxidize to form a top coat composed of hollow con-joint alumina spheres and simultaneously, an Al-rich diffusion zone is formed in the substrate. For a better understanding of the diffusion / growth processes, preliminary tests were carried out on pure nickel and Ni20Cr model alloys prior to further application on commercial superalloys. The effect of the heat treatment on the coating characteristics (number of layers, thickness, composition, homogeneity, etc.) was particularly investigated to emphasize the mechanisms of diffusion governing the growth of the coatings. The establishment of the diffused layers occurred very readily even at intermediate temperatures (650 and 700°C). However, the layers formed did not match perfectly with the thermodynamic modeling because of the quick incorporation of Ni into molten Al at intermediate temperatures (650°C). In contrast, at higher temperatures (700 and 1100°C) the phases predicted by Thermocalc are in good agreement with the observed thickness of the diffused layers. The incorporation of Cr as an alloying element restrained Al ingress by segregation of Cr even at very low temperatures aluminizing temperatures (625°C).
373
Abstract: Novel, unconventional type of high temperature coating systems can be elaborated by depositing Al micro-particles on nickel base substrates, using an appropriate binder, and converting them into a thermal barrier type coating by a two-step heat treatment under argon. Final result is a coating structure consisting of a quasi-foam top coat, constituted by spherical hollow alumina particles, surmounting a β-NiAl diffusion layer able to form during high-temperature oxidation a protective alumina scale. In this work, pure nickel was employed as a model material to evaluate the effects of moderate temperatures (550-700°C), dwelling times and Al particle size on the final characteristics of the coatings. Almost no diffusion occurred below 600°C. In contrast, a Ni2Al3 layer very quickly formed at 650 or 700°C. The rapidity of coating formation was attributed to the appearance of a liquid phase at the coating/substrate interface. The increase of dwelling time did not provide any significant thickness increase as the Al particles got practically emptied after 2h. In addition, the use of different micro-sized particles resulted in similar Al diffusion coatings under the investigated conditions.
381
Abstract: Plasma sputtering deposition of platinum on porous substrates is a relevant way for building high performance catalytic thin films. The knowledge and control of platinum density adsorbed in the porous medium, during deposition, are of primary importance. We show that the experimental concentration depth profiles originate from a superdiffusion phenomenon. Moreover experimental results are well described by a classical porous-fractal diffusion model, for which diffusion coefficient is also time-dependent, even if such a model does not include the proper physical mechanisms.
387
Abstract: We investigate and simulate the permeation behavior of PET membranes on which thin coatings are deposited. Depending on the parameters of deposition and on the thin coating thickness, we assume this alteration could make it possible to decrease by one order of magnitude the permeation coefficient. Some specific developments have been necessary, all the more not only a decrease of permeation is expected but also the mechanical strength of the thin coating during severe mechanical loadings. We consequently design devices dedicated to the permeation test but also to the bulge and blister tests which permit to check the mechanical properties of the film and its adhesion on the PET surface. This paper focuses on the permeation test.
393