Pressureless Sintering and Characterization of Al2O3-SiO2-ZrO2 Composite

Article Preview

Abstract:

An Oxide Ceramic-Based Composite in the Al2o3-Sio2-Zro2 (ASZ) System Was Developed and Investigated Using a Pressureless Sintering Route. the Effect of the Content of each Component and Sintering Temperature upon the Microstructure, Density, Hardness and Strength Was Studied. X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) Were Used to Investigate the Phase Transformation Sequences of the ASZ Composite System. the Flexural Strength Was Measured Using Three-Point Bending Method on a Universal Testing Machine, while the Indentation Fracture (IF) Method Was Used to Determine the Fracture Toughness of the Composite. the Results Showed that, with Varying Zro2 Content, Keeping the Silica Content Constant and the Alumina as a Matrix, Densification Tends to Decrease as the Content of Zirconia Increases from 20 Wt. % of the Composition. X-Ray Diffraction Peaks Indicated Fully Developed Alumina, Mullite and Zirconia Phases due to Solid-Phase Reaction and Liquid-Phase Sintering of the System. the Experimental Results Also Revealed that, for a Sintering Temperature of 1500°C, the Hardness Value Ranged from 12 Gpa to 14 Gpa and the Flexural Strength Was 420±31MPa.The Fracture Toughness (KIc) Was Also Reported to Be between 4.5 and 5.1 Mpa.m1/2, for Samples Sintered at a Temperature of 14500C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-128

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Oelgardt, C., et al., Sintering, microstructure and mechanical properties of Al2O3-Y2O3-ZrO2 (AYZ) eutectic composition ceramic microcomposites. Journal of the European Ceramic Society, 30(3) (2010) 649-656.

DOI: 10.1016/j.jeurceramsoc.2009.09.011

Google Scholar

[2] C. R. Ferrari, J.A.R., Microstructural features of alumina refractories with mullite-zirconia aggregates. Cerámica y Vidrio, (2003).

Google Scholar

[3] Launey, M.E., et al., Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10) (2009) 2919-2932.

DOI: 10.1016/j.actamat.2009.03.003

Google Scholar

[4] Medvedovski, E., Alumina-mullite ceramics for structural applications. Ceramics International, 32(4) (2006) 369-375.

DOI: 10.1016/j.ceramint.2005.04.001

Google Scholar

[5] Chen, T., F.A. Mohamed, and M.L. Mecartney, Threshold stress superplastic behavior and dislocation activity in a three-phase alumina-zirconia-mullite composite. Acta Materialia, 54(17) (2006) 4415-4426.

DOI: 10.1016/j.actamat.2006.05.002

Google Scholar

[6] Awaad, M., M.F. Zawrah, and N.M. Khalil, In situ formation of zirconia-alumina-spinel-mullite ceramic composites. Ceramics International, 34(2) (2008) 429-434.

DOI: 10.1016/j.ceramint.2006.11.002

Google Scholar

[7] W.H. Tuan, R.Z.C., T.C. Wang, C.H. Cheng, P.S. Kuo, Mechanical properties of Al2O3/ZrO2 composites. Journal of the European Ceramic Society, 22 (2002) 2827-2833.

DOI: 10.1016/s0955-2219(02)00043-2

Google Scholar

[8] Chonghai Xua, X.A., Chuanzhen Huang, Fabrication and performance of an advanced ceramic tool materia. Wear, 249 (2001) 503-508.

Google Scholar

[9] Khor, K.A. and Y. Li, Crystallization behaviors in the plasma-spheroidized alumina/zircon mixtures. Materials Letters, 48(2) (2001) 57-63.

DOI: 10.1016/s0167-577x(00)00280-9

Google Scholar

[10] Mazzei, A.C. and J.A. Rodrigues, Alumina-mullite-zirconia composites obtained by reaction sintering: Part I. Microstructure and mechanical behaviour. Journal of Materials Science, 35(11) (2000) 2807-2814.

Google Scholar

[11] Mazzei, A.C., J.A. Rodrigues, and V.C. Pandolfelli, Alumina-mullite-zirconia composites obtained by reaction sintering Part II. R-Curve behavior. Journal of Materials Science, 35(11) (2000) 2815-2824.

DOI: 10.1023/a:1004765326780

Google Scholar

[12] Nevarez-Rascon, A., et al., Al2O3 (w)-Al2O3 (n)-ZrO2 (TZ-3Y) n multi-scale nanocomposite: An alternative for different dental applications? Acta Biomaterialia, 6(2) (2009) 563-570.

DOI: 10.1016/j.actbio.2009.06.029

Google Scholar

[13] Orange, G., et al., High temperature mechanical properties of reaction-sintered mullite/zirconia and mullite/alumina/zirconia composites. Journal of Materials Science, 20(7) (1985) 2533-2540.

DOI: 10.1007/bf00556085

Google Scholar

[14] Qiang, Q., et al., Reactive hot pressing and sintering characterization of ZrB2-SiC-ZrC composites. Materials Science and Engineering A, 491(1-2) (2008) 117-123.

DOI: 10.1016/j.msea.2008.01.053

Google Scholar

[15] Yang, F.Z., J. Zhao, and X. Ai, Effect of initial particulate and sintering temperature on mechanical properties and microstructure of WC-ZrO2-VC ceramic composites. Journal of Materials Processing Technology, 209(9) (2009) 4531-4536.

DOI: 10.1016/j.jmatprotec.2008.10.027

Google Scholar

[16] Singh, J.P.B., Narottam P.; Ustundag, Ersan, ed. Advances in Ceramic Matrix Composites VI. 2000, John Wiley & Sons Inc.

Google Scholar

[17] Shike, Z., H. Xiaoxian, and G. Jingkun, The effect of mullite seeding on reaction-sintered mullite-zirconia multiphase ceramic. Journal of Materials Science Letters, 19(8) (2000) 707-710.

DOI: 10.1023/a:1006779131765

Google Scholar

[18] Zhang, D., et al., Differential sintering of Al2O3/ZrO2–Ni composite, during pulse electric current sintering. (2005).

DOI: 10.1016/j.ceramint.2005.02.011

Google Scholar

[19] Mukherjee, Y. -H.H. a.A.K., Nanostructured Bulk Ceramics (Part II. Superplasticity and High Strain Rate Superplasticity). Journal of the Korean Ceramic Society, (2009).

DOI: 10.4191/kcers.2009.46.4.345

Google Scholar

[20] Byung-Koog Jang, a. b.M.E., b Teruo Kishi b and Hee-Kap Oh", Effect of second phase on mechanical properties and toughening of A12O3 based ceramic composites. Composite Engineering, 5(11) (1995) 1275-1286.

DOI: 10.1016/0961-9526(95)00069-y

Google Scholar

[21] Zanelli, C., et al., Phase composition of alumina-mullite-zirconia refractory materials. Journal of the European Ceramic Society, 30(1) (2010) 29-35.

DOI: 10.1016/j.jeurceramsoc.2009.07.016

Google Scholar

[22] Garrido, L.B., et al., Hardness and fracture toughness of mullite-zirconia composites obtained by slip casting. Materials Science and Engineering A, 419(1-2) (2006) 290-296.

DOI: 10.1016/j.msea.2006.01.035

Google Scholar

[23] K. T. Kim, S.W.C., H. Park, Densification Behavior of Ceramic Powder Under Cold Compaction. ASME, 122 (2000).

Google Scholar

[24] Chantikul, P., et al., A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method. Journal of the American Ceramic Society, 64(9) (1981) 539-543.

DOI: 10.1111/j.1151-2916.1981.tb10321.x

Google Scholar

[25] Evans, A.G. Fracture toughness: the role of indentation techniques. 1979: ASTM International.

Google Scholar

[26] Anstis, G.R., et al., A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. Journal of the American Ceramic Society, 64(9) (1981) 533-538.

DOI: 10.1111/j.1151-2916.1981.tb10320.x

Google Scholar

[27] Chen, T. and M.L. Mecartney, Superplastic compression, microstructural analysis and mechanical properties of a fine grain three-phase alumina-zirconia-mullite ceramic composite. Materials Science and Engineering A, 410-411 (2005) 134-139.

DOI: 10.1016/j.msea.2005.08.094

Google Scholar