Electrical Conductivity and Phase Transition Studies in the ZrO2-CdO System

Article Preview

Abstract:

The Solid Solution of ZrO2 : Cdo Was Prepared by the Conventional Solid-State Reaction. Effect of Dopant Concentration on the Electrical Conductivity of ZrO2 Was Studied for Different Compositions at Different Temperatures. the Conductivity Increases with the Addition of Cdo due to the Migration of Vacancies. the Conductivity Increases with Rise in Temperature up to 180°C and Thereby Decreases due to the Collapse of Fluorite Framework. A Second Rise in Conductivity at High Temperature beyond 460°C Is due to the Phase Transition of ZrO2 from Monoclinic to Tetragonal. DSC, X Ray Powder Diffraction, Impedance Measurements and FTIR Spectral Studies Were Carried Out for Confirming the Doping Effect and Transitions in ZrO2. the Addition of Cdo to Zro2 Shifted the Phase Transition of ZrO2 to Higher Temperatures as Confirmed by the DSC Results. the Occurrence of Single Semi Circle with a Low Frequency Inclined Spike Indicates that the Conductivity Is Mainly due to the Movement of Oxide Ions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-157

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Skinner, S. J., Kilner, J. A., Materials Today (2003).

Google Scholar

[2] Knauth, P., Tuller, H. L., Journal of the American Ceramic Society, 85 (2002) 1654-1680.

Google Scholar

[3] Boivin, J. C., Mairesse, G., Chem. Mater.,. 10 (1998) 2870-2888.

Google Scholar

[4] Goodenough, J. B., Ceramic Technology, Oxide ion Conductors by design, news and views.

Google Scholar

[5] Steele, B. C. H., Solid State Ionics, 1223 (1996) 86-88.

Google Scholar

[6] Boumeester, H. J. M., Burgraff, A. J., The Fundamentals of Inorganic Membrane Science and Technology, Ed. By Burgraff, A. J., Cot, L., (Elsevier, Amsterdam, 1996. ).

Google Scholar

[7] Doshi, R., Routbort, J. L., Alcock, C. B., Defect and Diffusion Forum, 39 (1996) 127.

Google Scholar

[8] Tuller, H. L., Journal of the Physics and Chemistry of Solids, 55 (1994) 1393.

Google Scholar

[9] Kendall, K. R., Navas, C., Thomas, J. K., Zurloye, H. C., Solid State Ionics, 82 (1995) 215.

Google Scholar

[10] Gellings, P. J., Boumeester, H. J. M.,. Catalysis Today, 12 (1992) 1.

Google Scholar

[11] West, A. R., 1991. J. Mater. Chem., 1 (1991) 157.

Google Scholar

[12] Murch, G. E., Nowick, A. S.,. Diffusion in Crystalline Solids (Academic, New York, 1984).

Google Scholar

[13] Saiful, M., J. Mater. Chem., 10 (2000) 1027.

Google Scholar

[14] Beg, S., Sarita, Varshney, P., Phase Transitions, 80 (2007) 867-873.

Google Scholar

[15] Badwal, S. P. S., Solid State Ionics, 52 (1992) 23.

Google Scholar

[16] Badwal, S. P. S., Drennan, J.,. in Science of ceramic interfaces II edited by Nowotny, J.; (Elsevier science, Amsterdam, 1994) 71.

Google Scholar

[17] Lamas, D. G., Walsoe De Reca, N. E., J. Mater. Sci., 35 (2000) 5563.

Google Scholar

[18] Garvie, R. C., Hannink, R. H. J., Pascoe, R. T., Nature, 258 (1975) 703.

Google Scholar

[19] Lee, W. E., Rainforth, W. M.,. Ceramics Microstructures property control by processing (Chapman and Hall, London, 1994), 317.

Google Scholar

[20] Frey, F., Boysen, H., T. Vogt, T., Acta Crystallographica B, 46 (1990) 724.

Google Scholar

[21] Subbarao, E. C., Maiti, H. S., Srivastav, K. K., Physica Status Solidi A, 21 (1974) 9.

Google Scholar

[22] Smith, D. K., Newkrik, H.,. Acta Crystallographica, 18 (1965) 983.

Google Scholar

[23] Beg, S., Ahmad, A., Sarita, Varshney, P., Colloid Chemistry and Electrochemistry, Russian Journal of Physical Chemistry, 80 (2006) 1141-1145.

DOI: 10.1134/s0036024406070247

Google Scholar

[24] Kilner, J. A., Solid State Ionics, 129 (2000) 13.

Google Scholar

[25] Beg, S., Sarita, Varshney, P., Chinese Journal of Chemistry, 25 (2007) 1-10.

Google Scholar

[26] Nakamoto, K., Infrared and Raman spectra of inorganic and coordination compounds, John Wiley and sons, III edition, (1990).

Google Scholar

[27] Zaki, H. M., Mansour, S. F., Journal of Physics and Chemistry of Solids, 67 (2006) 1643.

Google Scholar

[28] Powder Diffraction file No. 040569.

Google Scholar

[29] Bondioli, F., C. Leonelli, C., Manfredini, T., Journal of the American Ceramic Society, 88 (2005) 633.

Google Scholar

[30] John, J. R., Kim, J. G., Kwon, T. D., Park, E. H.,. Characterization of Titanium Sulphate supported on Zirconia, Langmuir, 18 (2002) 1666.

Google Scholar

[31] Dygas, J. R., Malys, M., Krok, F., Wrobel, W., Kozanecka, A., Abrahams, I., Solid State Ionics, 176 (2005) (2085).

DOI: 10.1016/j.ssi.2004.12.017

Google Scholar

[32] Godinho, M. J., Bueno, P. R., Orlandi, M. O., Leite, E. R., Long, E., Materials Letters, 57 (2003) 2540.

Google Scholar

[33] Rao, C. N. R., Rao, K. J., Phase Transitions in Solids, (McGraw Hill. New York, 1978), 263.

Google Scholar

[34] Kumari, M. S., Secco, E. A., Canadian Journal of Chemistry, 56 (1978) 2616.

Google Scholar

[35] Kumari, M. S., Secco, E. A., Canadian Journal of Chemistry, 63 (1985) 324.

Google Scholar

[36] Nair, S. M., Yahya, A. I., Ahmad, A., Journal of Solid State Chemistry, 122 (1996) 349.

Google Scholar

[37] Gao, L., Liu, Q., Hong, J. S., et al., Journal of Materials Science, 33 (1998) 1399.

Google Scholar

[38] Acharaya, S. N., Mathews, M. D., Patwe, S. J., Tyagi, A. K., Journal of Materials Science, 18 (1999) 355.

Google Scholar

[39] Wrobel, W., Abrahams, I., Krok, F., Kozanecka, A., Chan, S. C. N., Malys, M., Bogusz, W., Dygas, J. R., Solid State Ionics, 176 (2005) 1731.

DOI: 10.1016/j.ssi.2005.04.024

Google Scholar