[1]
Y.J. Lee, Formation of aluminum nitride thin films as gate dielectrics on Si(100), Journal of Crystal Growth, 266 (2004) 568.
DOI: 10.1016/j.jcrysgro.2004.03.016
Google Scholar
[2]
A. Bahari, U. Robenhagen, P. Morgen, Z.S. Li, Growth of ultrathin silicon nitride on Si(111) at low temperature, Physical Review B, 72 (2005) 205323.
DOI: 10.1103/physrevb.72.205323
Google Scholar
[3]
A. Bahari, P. Morgen, Z.S. Li, Valence band studies of the formation of ultrathin pure silicon nitride films on Si(100), Surface Science, 600 (2006) 2966.
DOI: 10.1016/j.susc.2006.05.017
Google Scholar
[4]
A. Bahari, P. Morgen, K. Pedersen, Z.S. Li, Growth of a stacked silicon nitride / silicon oxide dielectric on Si(100), Journal of Vacuum Science and Technology B, 24 (2006) 2119.
DOI: 10.1116/1.2220574
Google Scholar
[5]
T. Bieniek, A. Wojtkiewicz, L. Lukasiak, R.B. Beck, Silicon dioxide as passivating, ultrathin layer in MOSFET gate stacks, Biochem. Soc. Trans., 29 (2001) 702.
DOI: 10.1109/wbl.2001.946588
Google Scholar
[6]
P. Morgen, A. Bahari, U. Robenhagen, J. Anderson, K. Pedersen, M.G. Rao, Z.S. Li, Roads to ultrathin silicon oxides, Journal of Vacuum Science and Technology A, 23 (2005) 201.
DOI: 10.1116/1.1842113
Google Scholar
[7]
A. Bahari, P. Morgen, Z.S. Li, Ultra thin silicon nitride films on Si(100) studied with core level photoemission, Surface Science, 602 (2008) 2315.
DOI: 10.1016/j.susc.2008.05.013
Google Scholar
[8]
A. Bahari, P. Morgen, K. Pedersen, Z.S. Li, Plasma assisted growth of ultrathin nitrides on Si surfaces under ultrahigh vacuum conditions, Journal of Physics - Conference Series, 86 (2007) 012019.
DOI: 10.1088/1742-6596/86/1/012019
Google Scholar
[9]
P.R. Giri, Non-commutativity as a measure of inequivalent quantization, International Journal of Theoretical Physics, 47 (2008) 1776.
Google Scholar
[10]
J. Appenzeller, E. Joselevich, W. Hoenlein, Nano-electronics and Information Technology, Wiley-VCH, Weinheim (2003).
Google Scholar
[11]
D.K. Schroder, Semiconductor material and device characterization, John Wiley & Sons, (2006).
Google Scholar
[12]
H. D. Xiong a, D. Heh b, M. Gurfinkel a, c, Q. Li a, Y. Shapira c, C. Richter a, G. Bersuker b, R. Choi b, J. S. Suehle, Characterization of electrically active defects in high-k gate dielectrics by using low frequency noise and charge pumping measurements, Microelectronic Engineering, 84 (2007).
DOI: 10.1016/j.mee.2007.04.094
Google Scholar
[13]
G. D. Wilka, R. M. Wallaceb, and J. M. Anthony, High-k gate dielectrics: Current status and materials properties considerations, Journal of Applied Physics, 89 (2001) 5243-5275.
DOI: 10.1063/1.1361065
Google Scholar
[14]
D. Spassov, E. Atanassova, and G. Beshkov, Effects of rapid thermal annealing in vacuum on electrical properties of thin Ta2O5–Si structures, Microelectronics Journal, 31 (2000) 653-661.
DOI: 10.1016/s0026-2692(00)00044-6
Google Scholar
[15]
S. H. Jeonga, I. S. Baea, Y. S. Shina, S. B. Leea, H. T. Kwakb, and J. H. Booa, Physical and electrical properties of ZrO2 and YSZ high-k gate dielectric thin films grown by RF magnetron sputtering, Thin Solid Films, 475 (2005) 354-358.
DOI: 10.1016/j.tsf.2004.07.023
Google Scholar
[16]
H. Shimizu, K. Asayama, N. Kawai, and T. Nishide, Material microcharacterization of sol–gel derived HfO2 thin films on silicon wafers, Japanese Journal of Applied Physics, 43 (2004) 6992–6993.
DOI: 10.1143/jjap.43.6992
Google Scholar
[17]
C. Zhao, T. Witters, B. Brijs, H. Bender, O. Richard, M. Caymax, T. Heeg, J. Schubert, V. V. Afanas'ev, A. Stesmans, and D. G. Schlom, Ternary rare-earth metal oxide high-k layers on silicon oxide, Applied Physics Letters, 86 (2005) 132903.
DOI: 10.1063/1.1886249
Google Scholar
[18]
X. Yu,C. Zhu, M. F. Li,A. Chin, A.Y.W. D. Du, Wang, andD.L. Kwong, Electrical characteristics and suppressed boron penetration behavior of thermally stable HfTaO gate dielectrics with polycrystalline-silicon gate, Applied Physics Letters, 85 (2004).
DOI: 10.1063/1.1795369
Google Scholar
[19]
Y. Yamamoto, K. Kita, K. Kyuno, A. Toriumi, Structural and electrical properties of HfLaOx films for an amorphous high-k gate insulator, Applied Physics Letters, 89 (2006) 032903-3.
DOI: 10.1063/1.2227630
Google Scholar