Electrical Properties of Zr-Doped La2O3 Nanocrystallites as a Good Gate Dielectric

Article Preview

Abstract:

Issues such as Tunneling, Leakage Currents and Light-Atom Penetration through the Film Are Threatening the Viability of Ultra-Thin Sio2 as a Good Dielectric for Industrial and Electronic Devices and in Ceramic Technologies. in this Paper, the Effect of Zirconium-Doped Lanthanum Oxide Is Investigated in the Hope that this Material Can Be Used as a Good Gate Dielectric for the next Generation of CMOS (Complementary-Metal-Oxide-Semiconductor). Zirconium Lanthanum Oxide Nanocrystallites with General Formula of Zrxla1-xOy Were Prepared by Using the Sol-Gel Method, such that the Zr Atomic Fractions in the Material Were in the Range of X = 5%, 20% and 50%. the Nanocrystallite’s Phases and Properties Were Characterized Using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) Techniques. Electrical Property Characterization Was Also Performed Using the Cyclic-Voltameter (C-V) Technique in TRIS Solution (pH = 7.3). C-V Measurements Show that Current through the TRIS Reduces at Higher Temperatures. Moreover, Elemental Qualitative Analysis Was Performed via Energy Dispersive X-Ray (EDX) Spectroscopy and Confirmed the above Claims.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-138

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.J. Lee, Formation of aluminum nitride thin films as gate dielectrics on Si(100), Journal of Crystal Growth, 266 (2004) 568.

DOI: 10.1016/j.jcrysgro.2004.03.016

Google Scholar

[2] A. Bahari, U. Robenhagen, P. Morgen, Z.S. Li, Growth of ultrathin silicon nitride on Si(111) at low temperature, Physical Review B, 72 (2005) 205323.

DOI: 10.1103/physrevb.72.205323

Google Scholar

[3] A. Bahari, P. Morgen, Z.S. Li, Valence band studies of the formation of ultrathin pure silicon nitride films on Si(100), Surface Science, 600 (2006) 2966.

DOI: 10.1016/j.susc.2006.05.017

Google Scholar

[4] A. Bahari, P. Morgen, K. Pedersen, Z.S. Li, Growth of a stacked silicon nitride / silicon oxide dielectric on Si(100), Journal of Vacuum Science and Technology B, 24 (2006) 2119.

DOI: 10.1116/1.2220574

Google Scholar

[5] T. Bieniek, A. Wojtkiewicz, L. Lukasiak, R.B. Beck, Silicon dioxide as passivating, ultrathin layer in MOSFET gate stacks, Biochem. Soc. Trans., 29 (2001) 702.

DOI: 10.1109/wbl.2001.946588

Google Scholar

[6] P. Morgen, A. Bahari, U. Robenhagen, J. Anderson, K. Pedersen, M.G. Rao, Z.S. Li, Roads to ultrathin silicon oxides, Journal of Vacuum Science and Technology A, 23 (2005) 201.

DOI: 10.1116/1.1842113

Google Scholar

[7] A. Bahari, P. Morgen, Z.S. Li, Ultra thin silicon nitride films on Si(100) studied with core level photoemission, Surface Science, 602 (2008) 2315.

DOI: 10.1016/j.susc.2008.05.013

Google Scholar

[8] A. Bahari, P. Morgen, K. Pedersen, Z.S. Li, Plasma assisted growth of ultrathin nitrides on Si surfaces under ultrahigh vacuum conditions, Journal of Physics - Conference Series, 86 (2007) 012019.

DOI: 10.1088/1742-6596/86/1/012019

Google Scholar

[9] P.R. Giri, Non-commutativity as a measure of inequivalent quantization, International Journal of Theoretical Physics, 47 (2008) 1776.

Google Scholar

[10] J. Appenzeller, E. Joselevich, W. Hoenlein, Nano-electronics and Information Technology, Wiley-VCH, Weinheim (2003).

Google Scholar

[11] D.K. Schroder, Semiconductor material and device characterization, John Wiley & Sons, (2006).

Google Scholar

[12] H. D. Xiong a, D. Heh b, M. Gurfinkel a, c, Q. Li a, Y. Shapira c, C. Richter a, G. Bersuker b, R. Choi b, J. S. Suehle, Characterization of electrically active defects in high-k gate dielectrics by using low frequency noise and charge pumping measurements, Microelectronic Engineering, 84 (2007).

DOI: 10.1016/j.mee.2007.04.094

Google Scholar

[13] G. D. Wilka, R. M. Wallaceb, and J. M. Anthony, High-k gate dielectrics: Current status and materials properties considerations, Journal of Applied Physics, 89 (2001) 5243-5275.

DOI: 10.1063/1.1361065

Google Scholar

[14] D. Spassov, E. Atanassova, and G. Beshkov, Effects of rapid thermal annealing in vacuum on electrical properties of thin Ta2O5–Si structures, Microelectronics Journal, 31 (2000) 653-661.

DOI: 10.1016/s0026-2692(00)00044-6

Google Scholar

[15] S. H. Jeonga, I. S. Baea, Y. S. Shina, S. B. Leea, H. T. Kwakb, and J. H. Booa, Physical and electrical properties of ZrO2 and YSZ high-k gate dielectric thin films grown by RF magnetron sputtering, Thin Solid Films, 475 (2005) 354-358.

DOI: 10.1016/j.tsf.2004.07.023

Google Scholar

[16] H. Shimizu, K. Asayama, N. Kawai, and T. Nishide, Material microcharacterization of sol–gel derived HfO2 thin films on silicon wafers, Japanese Journal of Applied Physics, 43 (2004) 6992–6993.

DOI: 10.1143/jjap.43.6992

Google Scholar

[17] C. Zhao, T. Witters, B. Brijs, H. Bender, O. Richard, M. Caymax, T. Heeg, J. Schubert, V. V. Afanas'ev, A. Stesmans, and D. G. Schlom, Ternary rare-earth metal oxide high-k layers on silicon oxide, Applied Physics Letters, 86 (2005) 132903.

DOI: 10.1063/1.1886249

Google Scholar

[18] X. Yu,C. Zhu, M. F. Li,A. Chin, A.Y.W. D. Du, Wang, andD.L. Kwong, Electrical characteristics and suppressed boron penetration behavior of thermally stable HfTaO gate dielectrics with polycrystalline-silicon gate, Applied Physics Letters, 85 (2004).

DOI: 10.1063/1.1795369

Google Scholar

[19] Y. Yamamoto, K. Kita, K. Kyuno, A. Toriumi, Structural and electrical properties of HfLaOx films for an amorphous high-k gate insulator, Applied Physics Letters, 89 (2006) 032903-3.

DOI: 10.1063/1.2227630

Google Scholar