Observation of Dielectric Peaks in Glassy Se70Te20Sn10 Alloy

Article Preview

Abstract:

The Temperature and Frequency Dependences of the Dielectric Constants () and Dielectric Loss (") Were Studied in Glassy Se70Te20Sn10 Alloy in the Audio-Frequency Range below the Glass Transition Region. the Results Indicated that Dielectric Dispersion Occurred in Glassy Se70Te20Sn10 Alloy. Well-Defined Dielectric Peaks Were Obtained in Glassy Se70Te20Sn10 Alloy; these Are Rarely Observed in Chalcogenide Glasses. such Loss Peaks Were Not Observed in the Glassy Se80-xTe20Snx System in the past for Sn Concentrations of x ≤ 8. A Detailed Analysis of the Data Showed that the Results Could Be Explained in Terms of Dipolar Relaxation, with a Distribution of Relaxation Times, this Is Quite Expected in the Case of Chalcogenide Glasses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-175

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Tanaka, Journal of Non-Crystalline Solids, 164 (1993) 1179.

Google Scholar

[2] M. Ohto, Physica Status Solidi A, 159 (1997) 461.

Google Scholar

[3] H. Fritzsche, M. Kaster, Philosophical Magazine B, 37 (1978) 285.

Google Scholar

[4] G. Yang, H. Jain, A. Ganjoo, D. Zhao, Y. Xu, H. Zeng, G. Chen, Optics Express, 14 (2008) 10565.

DOI: 10.1364/oe.16.010565

Google Scholar

[5] K. Suzuki, Y. H. Amachi, T. Baba, 17 (2009) 22393.

Google Scholar

[6] Dan Hewak, Nature - Photonics, 5 (2011) 474.

Google Scholar

[7] A. Sudha, K. S. Raghavan, Materials and Manufacturing Processes, 14 (1999) 547.

Google Scholar

[8] H. Kumar, N. Mehta and K. Singh, Physica Scripta, 80 (2009) 065602.

Google Scholar

[9] A. Sharma, N. Mehta, A. Kumar, Journal of Materials Science, 46 (2011) 4509.

Google Scholar

[10] D. Sharma, S. K. Dwivedi, R. K. Shukla, A. Kumar, Materials and Manufacturing Processes, 18 (2003) 93.

Google Scholar

[11] P. S. Chandel, A. Thakur, V. Sharma, N. Goyal, S. K. Tripathi, Indian Journal of Pure and Applied Physics, 42 (2004) 539.

Google Scholar

[12] A. Abdel Aal, Egyptian Journal of Solids, 29 (2006) 303.

Google Scholar

[13] S. Srivastava, N. Mehta, C. P. Singh, R.K. Shukla, A. Kumar, Physica B, 403 (2008) 2910.

Google Scholar

[14] D. Ghoneim, Chalcogenide Letters, 7 (2010) 657.

Google Scholar

[15] J. C. Guintini, J. V. Zanchetta, D. Jullen R. Eholle, P. Hoenou, Journal of Non- Crystalline Solids, 45 (1981) 57.

Google Scholar

[16] A.E. Bekheet, N.A. Hegab, Vacuum, 83 (2008) 391.

Google Scholar

[17] N.A. Hegab, M.A. Afifi, H.E. Atyia, A.S. Farid, Journal of Alloys and Compounds, 477 (2009) 925.

Google Scholar

[18] A. K. Singh, N. Mehta, K. Singh, J. Optoelectron. Adv. Mater., 12 (2010) 1700.

Google Scholar

[19] J. Sharma, S. Kumar, Pramana J. Phys., 74 (2010) 411.

Google Scholar

[20] J. Sharma, S. Kumar, Journal of Alloys and Compounds, 506 (2010) 710.

Google Scholar

[21] N. Mehta, D. Sharma, A. Kumar, Physica B, 391 (2007) 108.

Google Scholar

[22] R.H. Cole, K. S. Cole, Journal of Chemical Physics, 9 (1941) 341.

Google Scholar

[23] J. G. Powles, Journal of Chemical Physics, 21 (1953) 633.

Google Scholar

[24] H. Eyring, Journal of Chemical Physics, 4 (1936) 283.

Google Scholar

[25] A. E. Stearn, H. Eyring, Journal of Chemical Physics, 5 (1937) 113.

Google Scholar

[26] S. Glasstone, K. J. Laidler, H. Eyring, The Theory of Rate Processes; McGraw-Hill Publication, New York, (1941) 544.

Google Scholar

[27] P. Debye, Polar Molecules; New York, 1929; Chap. V.

Google Scholar

[28] N. F. Mott, E. A. Davis, R. A. Street, Philosophical Magazine, 32 (1975) 961.

Google Scholar