Numerical Approach of the Main Physical Operational Principle of Several Wave Energy Converters: Oscillating Water Column, Overtopping and Submerged Plate

Article Preview

Abstract:

In this work it is numerically studied the wave flow inside a tank and the main operational physical principle of three different wave energy converters (WEC): oscillating water column (OWC), overtopping and submerged plate. The wave energy converters are evaluated in laboratory and real scales. For all studied cases the conservation equations of mass, momentum and one equation for the transport of volumetric fraction are solved with the finite volume method (FVM). To tackle with water-air mixture, the multiphase model Volume of Fluid (VOF) is used. Several results showed the accuracy of the numerical approach for estimation of the physical phenomenon of wave flow inside tanks, as well as, its interaction with the studied devices. For the cases with geometrical optimization, Constructal Design is employed for geometrical evaluation of the devices. Results presented several theoretical recommendations about the influence of geometrical parameters (such as ratios between heights and lengths of OWC chamber and ramp of overtopping device and the distance from the plate to the seabed of wave tank) over the available power take off (PTO) in the OWC and submerged plate devices and over the amount of water stored in the reservoir of the overtopping device. Results showed the importance of geometric shapes over the devices performance. Moreover, it is evaluated the influence of several wave parameters (such as wave period and relative depths) over the fluid dynamic performance of the devices and geometrical parameters of the devices. It is noticed the non-occurrence of universal optimal shapes.

You might also be interested in these eBooks

Info:

[1] F. Pacheco, Energias Renováveis - Breves Conceitos, Conjuntura e Planejamento, SEI, Salvador, (2006).

Google Scholar

[2] J. Cruz, A. Sarmento, Wave Energy - Introdução aos Aspectos Tecnológicos, Econômicos e Ambientais, Institute of Ambiente, Alfragide, (2004).

Google Scholar

[3] C.R. Maliska, Transferência de Calor e Mecânica dos Fluidos Computacional, LTC: Livros Técnicos e Científicos, Rio de Janeiro, (2004).

Google Scholar

[4] P.R. B Devloo, Simulação Numérica, MultiCiência: A Linguagem da Ciência, 4 (2005) 1-13.

Google Scholar

[5] J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer, Berlim, (1997).

Google Scholar

[6] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201-225.

DOI: 10.1016/0021-9991(81)90145-5

Google Scholar

[7] M.E. McCormick, Ocean Engineering Wave Mechanics, John Wiley & Sons, New York, (1976).

Google Scholar

[8] R.G. Dean, R.A. Dalrymple, Water Wave Mechanics for Engineers and Scientists, World Scientific, Singapore, (1991).

Google Scholar

[9] Z. Liu, B. Hyun Liu, Application of numerical wave tank to OWC air chamber for wave energy conversion, in: Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, Vancouver, (2008).

Google Scholar

[10] M. M. Horko, CFD Optimization of an oscillating water column energy converter, MSc Thesis in Engineering Science, School of Mechanical Engineering, The university of Western, Western, (2007).

Google Scholar

[11] K.G. Santos, Estudo da fluidodinâmica do leito de jorro por CFD com malhas tridimensionais, MSc thesis, Federal University of Uberlândia, Uberlândia, (2008).

Google Scholar

[12] D.J. Mavriplis, Unstructured Grid Techniques, Annual Reviews Fluid Mechanics, (1997).

Google Scholar

[13] FLUENT 6. 3, 2006. Documentation Manual, information in <http: /www. fluent. com >.

Google Scholar

[14] T.G. Barreiro, Estudo da interação de uma onda monocromática com um conversor de energia, MSc thesis in Mechanical Engineering, University Nova de Lisboa, Lisboa, (2009).

Google Scholar

[15] M.N. Gomes, E. Santos, L.A. Isoldi, L.A.O. Rocha, Análise de malhas para geração numérica de ondas em tanques, in: Proceedings of VII International Congress of Mechanical Engineering (CONEM), São Luís, (2012).

Google Scholar

[16] L. Ling, C. Yongcan, L. Yuliang, Volume of Fluid (VOF) Method for Curved Free Surface Water Flow in Shallow Open Channel, Tsinghua University, Beijing, (2001).

Google Scholar

[17] X. Lv, Q. Zou, D. Reeve, Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method, Adv. Water Resour. 34 (2011) 1320-1334.

DOI: 10.1016/j.advwatres.2011.06.009

Google Scholar

[18] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw Hill, New York, (1980).

Google Scholar

[19] H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics - The Finite Volume Method, Longman, England, (1995).

Google Scholar

[20] R.S. Ramalhais, Estudo numérico de um dispositivo de conversão da energia das ondas do tipo coluna de água oscilante (CAO), MSc thesis in Mechanical Engineering, University Nova de Lisboa, Lisboa, (2011).

DOI: 10.26678/abcm.creem2020.cre2020-0095

Google Scholar

[21] F.G. Nielsen, M. Andersen, K. Argyriadis, S. Butterfield, N. Fonseca, T. Kuroiwa, M. LE. Boulluec, S.J. Liao, S.R. Turnock, J. Waegter, Ocean Wind and Wave Energy Utilization, ISSC, Southampton, (2006).

Google Scholar

[22] J. Twindell, T. Weir, Renewable Energy Resources, Taylor & Francis, London, (2006).

Google Scholar

[23] M.N. Gomes, Modelagem Computacional de um dispositivo do tipo coluna de água oscilante para a aonversao de energia das ondas do mar em energia elétrica, MSc thesis, Federal University of Rio Grande, Rio Grande, (2010).

DOI: 10.14808/sci.plena.2017.049915

Google Scholar

[24] A.E. Khalihg, O.C. Onar, Energy Harvesting: Solar, Wind and Ocean Energy Conversion Systems, Taylor & Francis, London, (2010).

Google Scholar

[25] A. F. Miguel, M. Aydin, Ocean exergy and energy conversion systems, International Journal of Exergy 10 (2012) 454-470.

DOI: 10.1504/ijex.2012.047507

Google Scholar

[26] WAVEGEN, 2011, information in: <http: /www. wavegen. co. uk/>.

Google Scholar

[27] T. Heath, The Construction, Commissioning and Operation of the LIMPET Wave Energy Collector, Wavegen, United Kingdom, (2001).

Google Scholar

[28] Z. Liu, B. Hyun, K. Hong, Numerical study of air chamber for oscillating water column wave energy convertor, China Ocean Eng. 25 (2011) 169-178.

DOI: 10.1007/s13344-011-0015-8

Google Scholar

[29] J.M.P. Conde, L.M.C. Gato, Numerical study of the air-flow in an oscillating water column wave energy converter, Renew. Energ. 33 (2008) 2637-2644.

DOI: 10.1016/j.renene.2008.02.028

Google Scholar

[30] A.E. Marjani, F.C. Ruiz, M.A. Rodriguez, M.T. P Santos, Numerical modelling in wave energy conversion systems, Energy 33 (2008) 1246-1256.

DOI: 10.1016/j.energy.2008.02.018

Google Scholar

[31] M.N. Gomes, C.R. Olinto, L.A.O. Rocha, J.A. Souza, L.A. Isoldi, Computational modeling of a regular wave tank. Therm. Eng. 8 (2009) 44-50.

DOI: 10.1109/mcsul.2009.27

Google Scholar

[32] A. Bejan, Shape and Structure: From Engineering to Nature. Cambridge University Press, New York, (2000).

Google Scholar

[33] A. Bejan, S. Lorente, Design with Constructal Theory, John Wiley & Sons), New Jersey, (2008).

Google Scholar

[34] A. Bejan, Design in Nature, Doulbeday, New York, (2012).

Google Scholar

[35] A. Bejan, S. Lorente, Constructal Law of Design and Evolution: Physics, Biology, Technology, and Society, J. Appl. Phys. 113 (2013) 151301-1 – 151301-20.

DOI: 10.1063/1.4798429

Google Scholar

[36] N.R. Lopes, F.S.P. Sant´anna, M.N. Gomes, J.A. Souza, P.R.F. Teixeira, E.D. Santos, L.A. Isoldi, L.A.O. Rocha, Constructal design optimization of the geometry of an oscillating water column wave energy converter (OWC-WEC), in: Proceedings of Constructal Law Conference (CLC), Federal University of Rio Grande do Sul, Porto Alegre, (2011).

DOI: 10.1007/978-1-4614-5049-8_16

Google Scholar

[37] L.A. O Rocha, S. Lorent, A. Bejan, Constructal Law and the Unifying Principle of Design, Springer-Verlag, (2013).

Google Scholar

[38] B.N. Machado, M.M. Zanella, M.N. Gomes, P.R.F. Teixeira, L.A. Isoldi, E.D. Santos, L.A.O. Rocha, Constructal design of an overtopping wave energy converter, in: Proceedings of Constructal Law Conference (CLC), Federal University of Rio Grande do Sul, Porto Alegre, (2011).

DOI: 10.32467/issn.2175-3628v23n1a14

Google Scholar

[39] Z. Liu, B. Hyun, J. Jin, Numerical prediction for overtopping performance of OWEC, J. Korean Soc. Marine Environ. Engine. 11 (2008) 35-41.

Google Scholar

[40] N. Dizadji, S.E. Sajadian, Modeling and optimization of the chamber of OWC system. Energy 36 (2011), 2360-2366.

DOI: 10.1016/j.energy.2011.01.010

Google Scholar

[41] J.P. Kofoed, P. Frigaard, E. Friis-Madsen, H.C. Sørensen, Prototype testing of the wave energy converter wave dragon, Renew. Energ. 31 (2006) 181-189.

DOI: 10.1016/j.renene.2005.09.005

Google Scholar

[42] L. Margheritini, D. Vicinanza, P. Frigaard, SSG wave energy converter: design, reliability and hydraulic performance of an innovative overtopping device, Renew. Energ. 34 (2009) 1371-1380.

DOI: 10.1016/j.renene.2008.09.009

Google Scholar

[43] S. LP. Iahnke, Estado da arte e desenvolvimento de um modelo de simulação numérica para o princípio de galgamento. MSc thesis in Computational Modeling, Federal University of Rio Grande, Rio Grande, (2010).

DOI: 10.11606/t.11.2007.tde-17042007-162559

Google Scholar

[44] C. Beels, P. Troch, K. Visch, J.P. Kofoed, G. Backer, Application of the time-dependent mild-slope equations for the simulation of wake effects in the lee of a farm of wave dragon wave energy converters, Renew. Energ. 35 (2010) 1644-1661.

DOI: 10.1016/j.renene.2009.12.001

Google Scholar

[45] E.D. Santos, B.N. Machado, M.M. Zanella, M.N. Gomes, J.A. Souza, L.A. Isoldi, L.A.O. Rocha, Numerical study of the effect of the relative depth on the overtopping wave energy converters according to constructal design, Defect Diffus. Forum 348 (2014).

DOI: 10.4028/www.scientific.net/ddf.348.232

Google Scholar

[46] A.B. Coli, Estudo do clima de ondas em Rio Grande (RS), MSc Thesis in Ocean Engineering, Federal University of Rio Grande, Rio Grande, (2000).

DOI: 10.17013/risti.27.67-85

Google Scholar

[47] S.K. Chakrabarti, Handbook of Offshore Engineering, Elsevier, London, (2005).

Google Scholar

[48] J.P. Kofoed, Wave overtopping of marine structures utilization of wave energy. PhD Thesis in Hydraulics & Coastal Engineering, Aalborg University, Aalborg, (2002).

Google Scholar

[49] E.D. Santos, B.N. Machado, N. Lopes, J.A. Souza, P.R.F. Texeira, M.N. Gomes, L.A. Isoldi, L.A.O. Rocha, Constructal design of wave energy converters, in: Constructal Law and the Unifying Principle of Design - Understanding Complex Systems, Springer, New York, 2013, pp.275-294.

DOI: 10.1007/978-1-4614-5049-8_16

Google Scholar

[50] K. -U. Graw, Shore protection and electricity by submerged plate wave energy converter, in: European Wave Energy Symposium, Edinburgh, (1993).

Google Scholar

[51] J. Brossard, G. Perret, L. Blonce, A. DiedhiouI, Higher harmonics induced by a submerged horizontal plate and a submerged rectangular step in a wave flume, Coast. Eng. 56 (2009) 11-22.

DOI: 10.1016/j.coastaleng.2008.06.002

Google Scholar

[52] T.M. Dick, A. Brebner, Solid and permeable submerged breakwaters, in: Proceedings of 11th Coastal Engineering Conference (ASCE 2), (1968).

DOI: 10.1061/9780872620131.072

Google Scholar

[53] K. -U. Graw, The submerged plate as a wave filter: the stability of the pulsating flow phenomenon, in: Proceedings of 23rd International Conference on Coastal Engineering (ICCE), Venice, (1992).

DOI: 10.1061/9780872629332.087

Google Scholar

[54] K. -U. Graw, The submerged plate wave energy converter: a new type of wave energy device, in: Proceedings of International Symposium on Ocean Energy Development (ODEC), Muroran, (1993).

Google Scholar

[55] K. -U. Graw, Is the submerged plate wave energy converter ready to act as a new coastal protection system?, in: Proceedings of XXIV Convegno di Idraulica e Costruzioni Idrauliche, Napoli, (1994).

Google Scholar

[56] K. -U. Graw, Vorrichtung zur erzeugung von elektrischer energie aus wasserwellen. PINA (Patent- und Innovationsagentur des Landes Nordrhein-Westfalen), Deutsches Patentamt, Patent Nr. (1995).

Google Scholar

[57] K. -U. Graw, Wellenenergie – eine hydromechanische Analyse. Bericht Nr. 8 des Lehr- und Forschungsgebietes Wasserbau und Wasserwirtschaft, Bergische Universitaet – Gesamthochschule, Wuppertal, (1995).

Google Scholar

[58] R.W. Carter, Wave energy converters and a submerged horizontal plate, MSc. Thesis in Ocean and Resources Engineering, University of Hawaii, Honolulu, (2005).

Google Scholar

[59] G. Orer, A. Ozdamar, An experimental study on the efficiency of the submerged plate wave energy converter. Renew. Energ. 32 (2007) 1317-1327.

DOI: 10.1016/j.renene.2006.06.008

Google Scholar

[60] F.M. Seibt, Modelagem computacional de conversor de energia das ondas do mar em energia elétrica do tipo placa submersa, Undergraduate thesis in Mechanical Engineering, Federal University of Rio Grande, Rio Grande, (2011).

DOI: 10.5380/rber.v6i3.52989

Google Scholar

[61] F.M. Seibt, E.C. Couto, E.D. Santos, E. Domingues, L.A. Isoldi, L.A.O. Rocha, P.R.F. Teixeira, Study on the effect of submerged depth on the horizontal plate wave energy converter, China Ocean Eng. 28 (2014) 687-700.

DOI: 10.1007/s13344-014-0056-x

Google Scholar

[62] F.M. Seibt, E.C. Couto, P.R.F. Teixeira, E.D. Santos, L.A.O. Rocha, L.A. Isoldi, Numerical Analysis of the fluid-dynamic behavior of a submerged plate wave energy converter, Comp. Therm. Sci. (2015) in press.

DOI: 10.1615/computthermalscien.2014010456

Google Scholar