Sensitivity Analysis and Inverse Problems in Microscale Heat Transfer

Article Preview

Abstract:

In the paper the selected problems related to the modeling of microscale heat transfer are presented. In particular, thermal processes occurring in thin metal films exposed to short-pulse laser are described by two-temperature hyperbolic model supplemented by appropriate boundary and initial conditions. Sensitivity analysis of electrons and phonons temperatures with respect to the microscopic parameters is discussed and also the inverse problems connected with the identification of relaxation times and coupling factor are presented. In the final part of the paper the examples of computations are shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-223

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Chen, D. Borca-Tasciuc, R.G. Yang, Nanoscale Heat Transfer, in: H.S. Nalwa (Eds. ), Encyclopedia of NanoScience and Nanotechnology, American Scientific Publishers, Valencia, California, 2004, p.429–459: http: /www. aspbs. com/enn.

Google Scholar

[2] Z. M . Zhang, Nano/microscale heat transfer, first ed., McGraw-Hill, New York, (2007).

Google Scholar

[3] A.N. Smith, P.M. Norris, Microscale heat transfer, in: A. Bejan, D. Kraus (Eds. ), Heat Transfer Handbook, John Wiley & Sons, New Jersey, 2003, 1309-1359.

Google Scholar

[4] R.A. Escobar, S.S. Ghai, M.S. Jhon, C.H. Amon, Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronic cooling, International Journal of Heat and Mass Transfer, 49 (2006) 97-107.

DOI: 10.1016/j.ijheatmasstransfer.2005.08.003

Google Scholar

[5] C. Cattaneo, A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Comp. Rend., 247 (1958) 431-433.

Google Scholar

[6] P. Vernotte, Les paradoxes de la theorie continue de l'equation de la chaleur, Comp. Rend., 246 (1958) 3154-3155.

Google Scholar

[7] D.Y. Tzou, A unified approach for heat conduction from macro- to micro-scale, ASME Journal of Heat Transfer, 117 (1995) 8-16.

DOI: 10.1115/1.2822329

Google Scholar

[8] D.Y. Tzou, Macro- to Microscale Heat Transfer: The lagging behaviour, first ed., Taylor and Francis, Washington, (1997).

Google Scholar

[9] J. Shiomi, S. Maruyama. Non-fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations, Physical Review B, 73 (2006) 205420-1-205420-7.

DOI: 10.1103/physrevb.73.205420

Google Scholar

[10] J. Ghazanfarian, A. Abbassi, Effect of boundary phonon scattering on dual-phase-lag model to simulate micro- and nano-scale heat conduction, International Journal of Heat and Mass Transfer, 52 (2009) 3706-3711.

DOI: 10.1016/j.ijheatmasstransfer.2009.01.046

Google Scholar

[11] M.A. Al-Nimr, Heat transfer mechanisms during short duration laser heating of thin metal films, International Journal of Thermophysics, 18 (1997) 1257-1268.

DOI: 10.1007/bf02575260

Google Scholar

[12] Z. Lin, L.V. Zhigilei, Electron-phonon coupling and electron heat capacity of metals unde conditions of strong electron-phonon nonequilibrium, Physical Review, B, 77 (2008) 075133-1-075133-17.

DOI: 10.1103/physrevb.77.075133

Google Scholar

[13] E. Majchrzak, B. Mochnacki, A.L. Greer, J.S. Suchy, Numerical modeling of short pulse laser interactions with multi-layered thin metal films, CMES: Computer Modeling in Engineering and Sciences, 41 (2009) 131-146.

Google Scholar

[14] T.Q. Qiu, C.L. Tien, Femtosecond laser heating of multi-layer metals – I. Analysis, International Journal of Heat and Mass Transfer, 37 (1994) 2789-2797.

DOI: 10.1016/0017-9310(94)90396-4

Google Scholar

[15] W. Tian, R. Yang, Phonon transport and thermal conductivity percolation in random nanoparticle composites, CMES: Computer Modeling in Engineering & Sciences, 24 (2008) 123-142.

Google Scholar

[16] M. Xu, L. Wang, Dual-phase-lagging heat conduction based on Boltzmann transport equation, International Journal of Heat and Mass Transfer, 48 (2005) 5616-5624.

DOI: 10.1016/j.ijheatmasstransfer.2005.05.040

Google Scholar

[17] R. A Escobar, C.H. Amon, Thin film phonon heat conduction by the dispersion lattice Boltzmann method, Journal of Heat Transfer, 130 (2008) 092402-1-092402-8.

DOI: 10.1115/1.2944249

Google Scholar

[18] T.C. Theodosiou, D.A. Saravanos, Molecular mechanics based finite element for carbon nanotube modeling, CMES: Computer Modeling in Engineering & Sciences, 19 (2007) 121-134.

DOI: 10.1115/caneus2006-11062

Google Scholar

[19] S. Maruyama, A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube, Microscale Thermophysical Engineering, 7 (2003) 41–50.

DOI: 10.1080/10893950390150467

Google Scholar

[20] M. Kaviany, Heat transfer physics, second ed., University Press, Cambridge, (2014).

Google Scholar

[21] M.A. Garisson Darin, J.L. Barth (Eds), Systems Engineering for Microscale and Nanoscale Technologies, first ed., Taylor & Francis Group, Abingdon, (2012).

Google Scholar

[22] S. Voltz (Eds. ), Thermal Nanosystems and Nanomaterials, first ed., Springer-Verlag, Heildelberg, (2009).

Google Scholar

[23] J.K. Chen, J.E. Beraun, Numerical study of ultrashort laser pulse interactions with metal films. Numerical Heat Transfer. Part A, 40 (2001) 1-20.

DOI: 10.1080/104077801300348842

Google Scholar

[24] M. Kleiber, Parameter sensitivity, first ed., J. Wiley & Sons Ltd., Chichester, (1997).

Google Scholar

[25] E. Majchrzak, B. Mochnacki, Sensitivity analysis of transient temperature field in microdomains with respect to the dual phase lag model parameters, International Journal for Multiscale Computational Engineering, 12 (2014) 65-77.

DOI: 10.1615/intjmultcompeng.2014007815

Google Scholar

[26] E. Majchrzak, J. Dziatkiewicz, G. Kałuża, Application of sensitivity analysis in microscale heat transfer, Computer Assisted Methods in Engineering and Science, 20 (2013) 113-121.

Google Scholar

[27] K. Kurpisz, A.J. Nowak, Inverse Thermal Problems, first ed., Computational Mechanics Publications, Southampton-Boston, (1995).

Google Scholar

[28] T. Burczyński, Sensitivity analysis, optimization and inverse problems, in: D. Beskos, G. Maier (Eds. ), Boundary element advances in solid mechanics, Springer Verlag, Vien, New York, 2003, pp.245-307.

DOI: 10.1007/978-3-7091-2790-2_6

Google Scholar

[29] E. Majchrzak, B. Mochnacki, Identification of thermal properties of the system casting-mould, Materials Science Forum, 539-543 (2007) 2491-2498.

DOI: 10.4028/www.scientific.net/msf.539-543.2491

Google Scholar

[30] W. Dai, R. Nassar, A compact finite difference scheme for solving a one-dimensional heat transport equation at the microscale, Journal of Computational and Applied Mathematics, 132 (2001) 431-441.

DOI: 10.1016/s0377-0427(00)00445-3

Google Scholar

[31] J. Dziatkiewicz, W. Kuś. E. Majchrzak, T. Burczyński, Ł. Turchan, Bioinspired identification of parameters in microscale heat transfer, International Journal for Multiscale Computational Engineering, 12 (2014) 79-89.

DOI: 10.1615/intjmultcompeng.2014007963

Google Scholar

[32] E. Majchrzak, J. Dziatkiewicz, Identification of electron-phonon coupling factor in a thin metal film subjected to an ultrashort laser pulse, Computer Assisted Methods in Engineering and Science, 19 (2012) 383-392.

Google Scholar