Prediction of Process-Induce Distortions and Residual Stresses of Ancomposite Suspension Blade

Article Preview

Abstract:

This paper deals with a universal simulation strategy for the calculation of process-induceddistortions and residual stresses of a composite part. The mechanical material behavior is describedby a viscoelastic material model depending on temperature and degree of cure . The required materialparameters are derived by dynamic mechanical analyses. For the description of the reaction kinetic aphenomenological based model considering chemical and diffusion-controlled reactions is introduced.The reaction model parameters are fitted to isothermal and dynamic DSC measurements via globaland local optimization. The thermal expansion and chemical shrinkage are characterized by thermalmechanical analysis and using the contact angle measurement method. The simulation strategy isdemonstrated for a GFRP suspension blade for the automobile industry. Based on a sequential coupledtemperature-displacement analysis thermal hot spots, temperature and degree of cure distributions aswell as the final corresponding process-induced distortions and residual stresses are calculated andanalyzed. The development of the stiffness and the correlated stress during the curing process arediscussed in more detail. Furthermore, the effect of a degree of cure dependent stiffness on the stressesis investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-243

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Zobeiry: Viscoelastic constitutive models for evaluation of residual stresses in thermoset composites during cure, University of British Columbia, (2006).

Google Scholar

[2] G. Fernlund: Spring-in of angled sandwich panels, Compos. Sci. Technol., vol. 65, no. 2, pp.317-323, (2005).

DOI: 10.1016/j.compscitech.2004.08.001

Google Scholar

[3] H. T. Hahn and N. J. Pagano : Curing Stresses in Composite Laminates, J. Compos. Mater., vol. 9, no. 1, pp.91-106, (1975).

Google Scholar

[4] L. P. Kollar: Approximate Analysis of the Temperature Induced Stresses and Deformations of Composite Shells, J. Compos. Mater., no. 5, pp.392-414 (1994).

Google Scholar

[5] D. W. Radford and R. J. Diefendorf: Shape Instabilities in Composites Resulting from Laminate Anisotropy, J. Reinf. Plast. Compos. , vol. 12 , no. 1 , pp.58-75, (1993).

DOI: 10.1177/073168449301200104

Google Scholar

[6] K. J. Yoon and J. -S. Kim: Effect of Thermal Deformation and Chemical Shrinkage on the Process Induced Distortion of Carbon/Epoxy Curved Laminates, J. Compos. Mater., vol. 35, no. 3, pp.253-263, (2001).

DOI: 10.1177/002199801772662244

Google Scholar

[7] E. Kappel: Process Distortions in Composite Manufacturing - From an Experimental Characterization to a Prediction Approach for the Global Scale, Otto-von-Guericke University Magdeburg, (2013).

Google Scholar

[8] A. A. Johnston: An integrated model of the development of process-induced deformation in autoclave processing of composite structures, University of British Columbia (1997), PhD.

Google Scholar

[9] G. Fernlund, N. Rahman, R. Courdji, M. Bresslauer, A. Poursartip, K. Willden, and K. Nelson: Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts, Compos. Part A Appl. Sci. Manuf., vol. 33, no. 3, pp.341-351, (2002).

DOI: 10.1016/s1359-835x(01)00123-3

Google Scholar

[10] G. Fernlund, A. Osooly, A. Poursartip, R. Vaziri, R. Courdji, K. Nelson, P. George, L. Hendrickson, and J. Griffith: Finite element based prediction of process-induced deformation of autoclaved composite structures using 2D process analysis and 3D structural analysis, Compos. Struct., vol. 62, no. 2, pp.223-234 (2003).

DOI: 10.1016/s0263-8223(03)00117-x

Google Scholar

[11] T. a. Bogetti and J. W. Gillespie: Process-Induced Stress and Deformation in Thick-Section Thermoset Composite Laminates, J. Compos. Mater., vol. 26, no. 5, pp.626-660, (1992).

DOI: 10.1177/002199839202600502

Google Scholar

[12] J. M. Svanberg: Predictions of Manufacturing Induced Shape Distortions - High Perfomance Thermoset Composites, Lulea University of Technology (2002), PhD.

Google Scholar

[13] P. Prasatya, G. B. McKenna, and S. L. Simon: A Viscoelastic Model for Predicting Isotropic Residual Stresses in Thermosetting Materials: Effects of Processing Parameters, J. Compos. Mater., vol. 35, no. 10, pp.826-848, (2001).

DOI: 10.1177/002199801772662424

Google Scholar

[14] Y. K. Kim and S. R. White: Process-Induced Stress Relaxation Analysis of AS4/3501-6 Laminate, J. Reinf. Plast. Compos., vol. 16, no. 1, pp.2-16 (1997).

DOI: 10.1177/073168449701600102

Google Scholar

[15] R. Hein, P. Steinle, T. Wille: Pseudo-Viscoelastic vs. Viscoelasic: Evaluation of Two Material Models for Curing Simulation of CFRP, Conference Proceedings, NAFEMS, Bamberg, Germany (2014).

Google Scholar

[16] C. Brauner, Analysis of process-induced distortions and residual stresses of composite structures, Faserinstitut Bremen (2013), PhD.

Google Scholar

[17] M. V. Zocher: A thermoviscoelastic finite element formulation for the analysis of composites, Texas A& M University (1995), PhD.

Google Scholar

[18] H. Poon and M. F. Ahmad: A material point time integration procedure for anisotropic, thermo rheologically simple, viscoelastic solids, Comput. Mech., vol. 21, no. 3, pp.236-242 (1998).

DOI: 10.1007/s004660050298

Google Scholar

[19] L. K. Jain and Y. -W. Mai: Stresses and Deformations Induced during Manufacturing. Part I: Theoretical Analysis of Composite Cylinders and Shells, J. Compos. Mater., vol. 31, no. 7, pp.672-695, (1997).

DOI: 10.1177/002199839703100703

Google Scholar

[20] H. W. Wiersma, L. J. B. Peeters, and R. Akkerman: Prediction of springforward in continuousfibre/polymer L-shaped parts, Compos. Part A Appl. Sci. Manuf., vol. 29, no. 11, pp.1333-1342, (1998).

DOI: 10.1016/s1359-835x(98)00062-1

Google Scholar

[21] N. I. Karkanas and I. K. Partridge: Cure Modeling and Monitoring of Epoxy/Amine Resin Systems. I. Cure Kinetics Modeling, J. Appl. Polym. Sci., vol. 77, no. 7, pp.1419-1431. (2000).

DOI: 10.1002/1097-4628(20000815)77:7<1419::aid-app3>3.0.co;2-n

Google Scholar

[22] S. Freund: Entwicklung eines Programms zur robusten Bestimmung der reaktionskinetischen Modellparameter für die Aushärtesimulation von Epoxidharzen., German Aerospace Center (DLR), Internal Report (2010).

Google Scholar

[23] J. P. Pascault and R. J. J. Williams: Glass Transition Temperature Versus Conversion Relationships For Thermosetting Polymers, vol. 28, p.8595 (1990).

Google Scholar

[24] J. D. Ferry: Viscoelastic Properties of Polymers, 2nd Edition, New York: John Wiley & Sons (1980).

Google Scholar

[25] G. C. Papanicolaou and S. P. Zaoutsos: Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites, Woodhead Publishing Series in Composites Science and Engineering, R. M. B. T. -C. and F. in P. M. C. Guedes, Ed. Woodhead Publishing, p.347, (2011).

DOI: 10.1533/9780857090430.1.3

Google Scholar

[26] D. Kroshko: OpenOpt, [Online], Available: http: /openopt. org.

Google Scholar

[27] International Standard: Plastics-Differnetial Scanning calorimetriy (DSC), Part 2: Determination of glass transition temperature (1999).

Google Scholar

[28] M. Herdy: ViscoData & ViscoShift, Avaiable: http: /www. viscodata. de, (2003).

Google Scholar

[29] C. C. Chamis: Simplified composite micromechanics equations for hygral, thermal and mechanical properties, SAMP Q., vol. NASA-TM-83, COMPOSITE MATERIALS, p.19 (1987).

Google Scholar

[30] Hutchinson S. A.: http: /www. hutchinsonworldwide. com.

Google Scholar

[31] H. Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden, Berlin/Heidelberg, SpringerVerlag (2005).

DOI: 10.1007/b137636

Google Scholar

[32] R. F. GmbH: R& G Handbook Composite Materials, http: /www. r-g. de (2014).

Google Scholar

[33] A. S. Ulrich Fischer, Roland Gomeringer, Max Heinzler, Roland Kilgus, Friedrich Näher, Stefan Oesterle, Heinz Paetzold: Tabellenbuch Metall mit Formelsammlung, Europa-Lehrmittel (2011).

Google Scholar

[34] V. Kaushik and J. Raghavan: Experimental study of tool-part interaction during autoclave processing of thermoset polymer composite structures, Compos. Part A Appl. Sci. Manuf., vol. 41, no. 9, pp.1210-1218, (2010).

DOI: 10.1016/j.compositesa.2010.05.003

Google Scholar