Modification of the Diffusion Process in the Iron-Aluminum System via Spark Plasma Sintering/Field Assisted Sintering Technology

Article Preview

Abstract:

The influence of Spark Plasma Sintering / Field Assisted Sintering Technology applying pulsed direct current up to the root-mean-square current densities of 129 A/cm2 on the interfacial reactions in Al - Fe - Al stacks was investigated at temperatures between 500°C and 600°C. Independently of the current density and current direction, thin Al13Fe4 and wide Al5Fe2 phases were detected in the diffusion couples. The Al5Fe2 phase consisted of columnar grains having a {001}-fiber texture. Al13Fe4 was found in the form of discontinuous spots at the Al/Al5Fe2 interface. The interface between Al5Fe2 and Fe was highly fringed. The layer growth kinetics of Al5Fe2 was parabolic. The growth rate was strongly enhanced in the SPS/FAST experiments as compared to the conventional diffusion experiments, independently, on the current direction. It is suggested that the enhanced growth rates are a result of temperature gradients existing in a typical Spark Plasma Sintering device. Possible effects of thermomigration and electromigration are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-9

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. S. Stoloff: Mater. Sci. Eng. A258 (1998), p.1.

Google Scholar

[2] U. Prakash, R. A. Buckley, H. Jones, C. M. Sellars: ISIJ International 31 (10) (1991), p.1113.

Google Scholar

[3] J. Bystrzycki, A. Fraczkiewicz, R. Łyszkowski, M. Mondon, Z. Pakieła: Intermetallics 18 (2010), p.1338.

DOI: 10.1016/j.intermet.2010.01.014

Google Scholar

[4] S. Paris, C. Valot, L Gosmain, E. Gaffet, F. Bernard, Z. Munir: J. Mater. Res. 18 (10) (2003), p.2331.

DOI: 10.1557/jmr.2003.0327

Google Scholar

[5] K. S. Yun, J. H. Lee, C. W. Won: Mater. Res. Bull. 35 (2000), p.1709.

Google Scholar

[6] D. L. Joslin, D. S. Easton, C. T. Liu, S. A. David: Mater. Sci. Eng. A 192/193 (1995) p.544.

Google Scholar

[7] Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi: J. Mater. Sci. 41 (2006), p.763.

Google Scholar

[8] U. R. Kattner, B. P. Burton, Al-Fe (Aluminum-Iron), Monograph series on alloy phase diagrams, Phase diagrams of binary Iron alloys (1993), p.12.

DOI: 10.31399/asm.hb.v03.a0006162

Google Scholar

[9] V. Jindal, V. C. Srivastava, A. Das, R. N. Ghosh: Mater. Lett. 60 (2006), p.1758.

Google Scholar

[10] D. Naoi, M. Kajihara: Mater. Sci. Eng. A 459 (2007), p.375.

Google Scholar

[11] M. Kajihara: Mater. Trans. 47 6 (2006), p.1480.

Google Scholar

[12] W. -J. Cheng, C. -J. Wang: Surf. Coat. Tech. 204 (2009), p.824.

Google Scholar

[13] W. -J. Cheng, C. -J. Wang: Appl. Surf. Sci. 257 (2011), p.4663.

Google Scholar

[14] H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari, J. Hejazi: J. Mater. Process. Tech. 124 (2002), p.345.

Google Scholar

[15] N. Takata, M. Nishimoto, S. Kobayashi, M. Takeyama: Intermetallics 54 (2014) p.136.

Google Scholar

[16] Y. Tanaka, M. Kajihara: Mater. Trans. 50 (9) (2009), p.2212.

Google Scholar

[17] A. Bouayad, Ch. Gerometta, A. Belkebir, A. Ambari, Mat. Sci. Eng. A363 (2003), p.53.

Google Scholar

[18] J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir: Intermetallics 12 (2004), p.589.

Google Scholar

[19] N. Bertolino, J. Garay, U. Anselmi-Tamburini, Z.A. Munir: Scripta Mater. 44 (2001), p.737.

DOI: 10.1016/s1359-6462(00)00669-2

Google Scholar

[20] J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir: Acta Mater. 51 (2003), p.4487.

Google Scholar

[21] U. Anselmi-Tamburini, J. E. Garay, Z. A. Munir: Mater. Sci. Eng. A 407 (2005), p.24.

Google Scholar

[22] S. -W. Chen, C. -M. Chen, W. -C. Liu: J. Electron. Mater. 27 (11) (1998), p.1193.

Google Scholar

[23] C. -M. Chen , S. -W. Chen: J. Electron. Mater. 29 (10) (2000), p.1222.

Google Scholar

[24] C. -M. Chen , S. -W. Chen: J. Electron. Mater. 28 (7) (1999), p.902.

Google Scholar

[25] C. Chen, H. -Y. Hsiao, Y. -W. Chang, F. Ouyang, K. N. Tu: Mater. Sci. Eng. R 73 (2012), p.85.

Google Scholar

[26] P. Auerkari: Mechanical and physical properties of engineering alumina ceramics (Res. Not 1792, Finland 1996).

Google Scholar

[27] K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Van der Biest: Acta Mater. 53 (2005), p.4379.

Google Scholar

[28] J. Philibert: Defect Diffusion Forum 95-98 (1993), p.493.

Google Scholar

[29] J. Philibert: Defect Diffusion Forum 66-69 (1990), p.995.

Google Scholar

[30] V. I. Dybkov, Mat. Sci, 21 (1986), p.3085.

Google Scholar

[31] K. Bouche, F. Barbier, A. Coulet: Mater. Sci. Eng. A 249 (1998), p.167.

Google Scholar

[32] S. Kobayashi, T. Yakou: Materials Mater. Sci. Eng. A338 (2002), p.44.

Google Scholar

[33] S. C. Kwon, J. Y. Lee: Can. Metall. Quart. 20 (3) (1981), p.351.

Google Scholar

[34] T. Sasaki, T. Yakou: Surf. Coat. Tech. 201 (2006), p.2131.

Google Scholar

[35] W. -C. Liu, S. -W. Chen, C. -M. Chen: J. Electron. Mater. 27 (1) (1998), p.5.

Google Scholar

[36] P. Asoka-Kumar, K. O'Brien, K. G. Lynn, P. J. Simpson, K. P. Rodbell: Appl. Phys. Lett. 68 (1996), p.406.

Google Scholar

[37] M. Braunovic, N. Alexandrov, IEEE Trans. Components Packaging, Manuf. Technol. Part A 17 (1) (1994), p.78.

Google Scholar

[38] J. Räthel, M. Herrmann, W. Beckert: J. Eur. Ceram. Soc. 29 (2009), p.1419.

Google Scholar

[39] G. Molénat, L. Durand, J. Galy, A. Couret: J. Metallurgy 2010 (2010), p.1.

Google Scholar