Precipitation Processes in Hot-Rolled Al-Mn-Sc-Zr Alloy

Article Preview

Abstract:

The effect of hot rolling on mechanical and electrical properties, microstructure and recrystallization behaviour of the AlMnScZr alloy was studied. The mould-cast alloy and the alloy after hot rolling at 300 °C was studied during step-by-step quasilinear annealing from 200 °C up to 600 °C with heating rate 100 K/h followed by subsequent isothermal annealing at 600 °C/5 h. Precipitation reactions were studied by electrical resistometry, differential scanning calorimetry and hardness measurements. Transmission electron microscopy and electron backscatter diffraction examination of specimens quenched from temperatures of significant resistivity changes were used to identify microstructural processes responsible for these changes. Only occasional irregular sharp-edged polygonal particles of the AlMnFeSi system were found in the as-prepared state of the mould-cast alloy. The as-prepared state of the hot-rolled alloy was characterized by a dispersion of fine coherent Al3Sc and/or Al3(Sc,Zr) particles and furthermore a fine (sub) grain structure was observed. The hardening effect in the alloys is due to presence and/or precipitation of the Sc,Zr-containing particles with L12 structure. The distinct resistivity changes of the alloys are mainly caused by precipitation of Mn-containing particles. Two-stage development of the Al6Mn phase (in (sub) grain interiors and at (sub) grain boundaries) in the hot-rolled alloy was observed. The presence of Sc,Zr-and Mn-containing particles has an anti-recrystallization effect that prevents recrystallization minimally up to 600 °C and annealing of 1 hour in the hot-rolled alloy. The apparent activation energy for the Al3(Sc,Zr)-phase and Al6Mn-phase precipitation was also determined. The activation energy values obtained in the hot-rolled AlMnScZr alloy are comparable to those observed in the hot deformed AlMnScZr alloys prepared by powder metallurgy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-24

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. S. Toropova, D. G. Eskin, M. L. Kharakterova and T. V. Dobatkina: Advanced Aluminium Alloys Containing Scandium – Structure and Properties, Gordon and Breach Science Publisher, The Netherlands (1998).

DOI: 10.4324/9781315097541

Google Scholar

[2] M. Vlach, I. Stulíková, B. Smola, T. Kekule, H. Kudrnová, S. Daniš, R. Gemma, V. Očenášek, J., Málek, D. Tanprayoon and V. Neubert: Materials Characterization, 86 (2013), p.59, doi: 10. 1016/j. matchar. 2013. 09. 010.

DOI: 10.4149/km_2015_5_295

Google Scholar

[3] W. Lefebvre, F. Danoix, H. Hallem, B. Forbord, A. Bostel and K. Marthinsen: Journal of Alloys and Compounds, 470 (2009), p.107, doi: 10. 1016/j. jallcom. 2008. 02. 043.

DOI: 10.1016/j.jallcom.2008.02.043

Google Scholar

[4] M. Vlach, I. Stulíková, B. Smola, H. Císařová, J. Piešová, S. Daniš, R. Gemma, J. Málek, D. Tanprayoon and V. Neubert: International Journal of Materials Research, 103 (2012), p.814, doi: 10. 3139/146. 110712.

DOI: 10.3139/146.110712

Google Scholar

[5] M. Poková, M. Cieslar, J. Lacaze: Acta Physica Polonica, A 122 (2012), p.625.

Google Scholar

[6] M. Vlach, I. Stulíková, B. Smola, T. Kekule, H. Kudrnová, V. Kodetová, V. Očenášek, J. Málek, V. Neubert: Kovove Mater., 53 (2015), p.295.

DOI: 10.4149/km_2015_5_295

Google Scholar

[7] Z. Jia, G. Hu, B. Forbord and J. K. Solberg: Materials Science and Engineering, A 444 (2007), p.284, doi: 10. 1016/j. msea. 2006. 08. 097.

Google Scholar

[8] M. Vlach, J. Čížek, O. Melikhová, I. Stulíková, B. Smola, T. Kekule, H. Kudrnová, R. Gemma and V. Neubert: Metallurgical and Materials Transactions A, 46 (2015), p.1556, doi: 10. 1007/s11661-015-2767-x.

Google Scholar

[9] M. Vlach, I. Stulíková, B. Smola, J. Piešová, H. Císařová, S. Daniš, J. Plášek, R. Gemma, D. Tanprayoon and V. Neubert: Materials Science and Engineering, A 548 (2012), p.27, doi: 10. 1016/j. msea. 2012. 03. 063.

DOI: 10.3139/146.110712

Google Scholar

[10] Saumitra Saha, T.Z. Todorova and J.W. Zwanziger: Acta Materialia, 89 (2015), p.109, doi: 10. 1016/j. actamat. 2015. 02. 004.

Google Scholar

[11] Ch. Booth-Morrison, D. C. Dunand and D. N. Seidman: Acta Materialia, 59 (2011), p.7029, doi: 10. 1016/j. actamat. 2011. 07. 057.

Google Scholar

[12] K. E. Knipling, D. C. Dunand and D. N. Seidman: Zeitschrift für Metallkunde, 97 (2006), p.246.

Google Scholar

[13] X. Huang, Q. Pan, B. Li, Z. Liu, Z. Huang and Z. Yin: Journal of Alloys and Compounds, 629 (2015), p.197, doi: 10. 1016/j. jallcom. 2014. 11. 227.

Google Scholar

[14] P. Olafsson, R. Sandstrom and A. J. Karlsson: Journal of Materials Science, 32 (1997), p.4383, doi: 10. 1023/A: 1018680024876.

Google Scholar

[15] G. M. Novotny, and A. J. Ardell: Matererials Science and Engineering, A 318 (2001), p.144, doi: 10. 1016/S0921-5093(01)01326-0.

Google Scholar

[16] S. I. Fujikawa, M. Sugaya, H. Takei and K. I. Hirano: Journal of the Less Common Metals, 63 (1979), p.87, doi: 10. 1016/0022-5088(79)90211-X.

DOI: 10.1016/0022-5088(79)90211-x

Google Scholar

[17] M. Vlach, I. Stulíková, B. Smola and N. Žaludová: Materials Characterization, 61 (2010), p.1400, doi: 10. 1016/j. matchar. 2010. 10. 006.

DOI: 10.1016/j.matchar.2010.10.006

Google Scholar

[18] M. J. Starink: Thermochimica Acta, 404 (2003), p.163, doi: 10. 1016/S0040-6031(03)00144-8.

Google Scholar