Effect of TiO2 Doping on Microdefects and Electrical Properties of ZnO-Based Varistors

Article Preview

Abstract:

Positron lifetime spectrum and electrical property measurements were performed on ZnO-based ceramics doped with different contents of TiO2. For ZnO-based ceramics with TiO2 content less than 1.8 mol%, the mean positron lifetime of the ZnO-based ceramic decreases with increasing in TiO2 content, and reaches a minimum value at 1.8 mol% TiO2. As the TiO2 content higher than 1.8 mol%, the mean positron lifetime increases with TiO2 content. The ZnO-based varistor with 1.8 mol% TiO2 exhibites an optimized varistor property; it has a relatively low leakage current IL, a relatively low breakdown voltage VB, and a relatively high nonlinear coefficient α. The effects of TiO2 doping on microdefects and electrical properties of ZnO-based varistors were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-200

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Wong, Sintering and varistor characteristics of ZnO-Bi2O3 ceramics, J. Appl. Phys. 51 (1980). 4453-4459.

DOI: 10.1063/1.328266

Google Scholar

[2] G. D. Mahan, Lionel M. Levinson, H. R. Philipp, Theory of conduction in ZnO varistors, J. Appl. Phys. 50 (1979) 2799-2812.

DOI: 10.1063/1.326191

Google Scholar

[3] D. R. Clarke, Varistor ceramics, J. Am. Ceram. Soc. 82 (1999) 485-502.

Google Scholar

[4] P. Q. Mantas, J. L. Baptista, The barrier height formation in ZnO varistor, J. Eur. Ceram. Soc. 15 (1995) 605-615.

Google Scholar

[5] T. K. Gupta, Application of zinc oxide varistors, J. Am. Ceram. Soc. 73 (1990) 1817-1840.

Google Scholar

[6] D. F. K. Hennings, R. Hartung, P. J. T. Reijnen, Grain size control in low-voltage varistor ceramics, J. Am. Ceram. Soc. 73 (1990) 645-648.

DOI: 10.1111/j.1151-2916.1990.tb06566.x

Google Scholar

[7] H. Suzuki, G. C. Bradt, Grain growth of ZnO in ZnO-Bi2O3 ceramics with TiO2 additions, J. Am. Ceram. Soc. 78 (1995) 1354-1360.

DOI: 10.1111/j.1151-2916.1995.tb08494.x

Google Scholar

[8] ÖH Toplan, Y. Karakas, Grain growth in TiO2-added ZnO-Bi2O3-CoO-MnO ceramics prepared by chemical processing, Ceram. Int. 28 (2002) 911-915.

DOI: 10.1016/s0272-8842(02)00073-1

Google Scholar

[9] Nina Daneu, Nives Novak Gramc, Aleksander Reˇcnik , Marjeta Maˇcek Krˇzmanc, Slavko Bernik, Shock-sintering of low-voltage ZnO-based varistor ceramics with Bi4Ti3O12 additions, Journal of the European Ceramic Society 33 (2013) 335-344.

DOI: 10.1016/j.jeurceramsoc.2012.08.023

Google Scholar

[10] P. Kirkegaard, Positronfit extended: a new version of a program for analysing positron lifetime spectra, Comput. Phys. Commun. 7 (1974) 401-409.

DOI: 10.1016/0010-4655(74)90070-8

Google Scholar

[11] W. Brandt, R. Paulin, Positron diffusion in solid, Phys. Rev. B 5 (1972) 2430-2435.

Google Scholar

[12] D. Xu, L. Y. Shi, Z. H. Wu, Q. D. Zhong, X. X. Wu, Microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics by different sintering processes, Journal of the European Ceramic Society 29 (2009) 1789-1794.

DOI: 10.1016/j.jeurceramsoc.2008.10.020

Google Scholar