Studies of Microstructure and Electro-Magnetic Transport Property of La0.67Ca0.33MnO3 Ceramic

Article Preview

Abstract:

The positron annihilation techniques and X-ray diffraction have been used to study the microstructure of the La0.67Ca0.33MnO3 ceramics prepared by the solid-state reaction method at different sintered temperatures (T=1573K, 1623K, 1673K, 1723K, 1773K, 1823K). And the electro-magnetic transport behavior of the samples was measured by VSM and Resistivity modular on PPMS. According to these results, all samples show a perovskite structure, the ferromagnetic-paramagnetic and metal-insulator transitions occur at the transition temperature Tc and TMI, respectively, which is almost the same. For La0.67Ca0.33MnO3 sintered at 1673K, the mean positron lifetime is the largest, the maximum value of the magnetization is achieved on the magnetization-temperature curve at H=0.2mT, while the transition temperature occurs at about 244K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-208

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ramirez A P. Colossal magnetoresistance[J]. Journal of Physics: Condensed Matter, 1997, 9(39): 8171.

Google Scholar

[2] Coey J M D, Viret M, Von Molnar S. Mixed-valence manganites[J]. Advances in physics, 2009, 58(6): 571-697.

DOI: 10.1080/00018730903363184

Google Scholar

[3] Dagotto E, Hotta T, Moreo A. Colossal magnetoresistant materials: the key role of phase separation[J]. Physics reports, 2001, 344(1): 1-153.

DOI: 10.1016/s0370-1573(00)00121-6

Google Scholar

[4] Nagaev E L. Lanthanum manganites and other giant-magnetoresistance magnetic conductors[J]. Physics-Uspekhi, 1996, 39(8): 781.

DOI: 10.1070/pu1996v039n08abeh000161

Google Scholar

[5] Nagaev E L. Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors[J]. Physics Reports, 2001, 346(6): 387-531.

DOI: 10.1016/s0370-1573(00)00111-3

Google Scholar

[6] Kim K H, Uehara M, Kiryukhin V, et al. Colossal Magnetoresistive Manganites[J], Kluwer Academic Publishers, Netherlands, 2004: 131.

DOI: 10.1007/978-94-015-1244-2_4

Google Scholar

[7] Dagotto E, Burgy J, Moreo A. Nanoscale phase separation in colossal magnetoresistance materials: lessons for the cuprates[J]. Solid State Communications, 2003, 126(1): 9-22.

DOI: 10.1016/s0038-1098(02)00662-2

Google Scholar

[8] Jonker G H, Van Santen J H. Ferromagnetic compounds of manganese with perovskite structure[J]. physica, 1950, 16(3): 337-349.

DOI: 10.1016/0031-8914(50)90033-4

Google Scholar

[9] Van Santen J H, Jonker G H. Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure[J]. Physica, 1950, 16(7): 599-600.

DOI: 10.1016/0031-8914(50)90104-2

Google Scholar

[10] Kirkegaa P. Positronfit Extended: a new version of a program for analyzing positron lifetime spectra[J], Comput. Phys. Commun, 1974, 7(7): 401–409.

Google Scholar

[11] Kar A K, Dhar A, Ray S K, et al. Scanning tunnelling microscopic and spectroscopic investigation of the microstructural and electronic properties of the grain boundaries of giant magnetoresistive manganites[J]. Journal of Physics: Condensed Matter, 1998, 10(48): 10795.

DOI: 10.1088/0953-8984/10/48/003

Google Scholar

[12] Murugavel P, Lee J H, Yoon J G, et al. Origin of metal-insulator transition temperature enhancement in underdoped lanthanum manganite films[J]. Applied physics letters, 2003, 82: (1908).

DOI: 10.1063/1.1563740

Google Scholar