Asymmetric Positron Interactions with Chiral Quartz Crystals?

Article Preview

Abstract:

We have studied the interaction of the positron with chiral left-or right-handed quartz crystals. In Doppler-broadening experiments, using a mono-energetic positron beam there is a differential depth profile for positrons implanted in LH or RH z-cut quartz as identified by a shape parameter (S). Further, in bulk positron annihilation lifetime spectroscopy (PALS) experiments, the lifetime (τ 2) attributed to free annihilation of the positron interacting with the chiral lattice exhibits a larger value for the LH quartz, and the associated intensity (I2) is also significantly different—RH quartz is consistently 10% greater than the LH crystal. The τ 3 lifetime and its intensity, I3, attributed to positronium interacting with defects in the quartz, also appears to exhibit differences between the enantiomeric sets of crystals. These observations may demonstrate chiral recognition using a positron annihilation technique, pave the way for a broad range of positron experiments, and may help inform hypotheses of chirality recognition, selection, or induction by beta radiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

221-226

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Hicks, Ed., Chirality: Physical Chemistry, Am. Chem. Soc., Washington, DC, (2002).

Google Scholar

[2] S. Y. Chuang and S. J. Tao, J. Phys. Chem. 78 (1974) 1261.

Google Scholar

[3] Y. C. Jean and H. Ache, J. Phys. Chem. 81 (1977) 1157.

Google Scholar

[4] L. Chiari, A. Zecca, S. Girardi, A. Defant, F. Wang, X. G. Ma, M. V. Perkins and M. J. Brunger, Phys. Rev. A, 85 (2012) 052711.

DOI: 10.1103/physreva.85.052711

Google Scholar

[5] J. M. Dreiling and T. J. Gay, Phys. Rev. Lett. 113 (2014) 118103.

Google Scholar

[6] T. D. Lee and C. N. Yang, Phys. Rev. 104 (1956) 254.

Google Scholar

[7] M. M. Ulrich and D. C. Walker, Nature, 258 (1975) 418.

Google Scholar

[8] A. Rich, Nature, 264 (1976) 482.

Google Scholar

[9] D. W. Gidley, A. Rich, J. Van House, and P. W. Zitzewitz, Nature, 297 (1982) 639.

Google Scholar

[10] R. A. Hegstrom, Nature 297 (1982) 643.

Google Scholar

[11] L. A. Page and M Heinberg, Phys. Rev. 106 (1957) 1220.

Google Scholar

[12] P. W. Zitzewitz, J. C. Van House, A. Rich and D. W. Gidley, Phys. Rev. Lett. 43 (1979) 1281.

Google Scholar

[13] J. Van House and P. W. Zitzewitz, Phys. Rev. A, 29 (1984) 96.

Google Scholar

[14] W. Brandt, G. Coussot, and R. Paulin, Phys. Rev. Lett. 23 (1969) 522.

Google Scholar

[15] H. Saito and T. Hyodo, Phys. Rev. Lett. 90 (2003) 193401.

Google Scholar

[16] C. Hugenschmidt, P. Pikart, and K. Schreckenbach, Phys. Status Solidi C, 6 (2009) 2459.

Google Scholar

[17] M. L. Chithambo, P. Sane, and F. Tuomisto, Radiat. Meas. 46 (2011) 310.

Google Scholar

[18] C. Laermansi, Mbungu-Tsumbu, D. Segers, M. Dorikens, L. Dorikens-Vanpraett, A. Van den Bosch and J. Cornelis, J. Phys. C Solid State, 17 (1984) 763.

DOI: 10.1088/0022-3719/17/4/017

Google Scholar

[19] Th. Gessmann, J. Majory and A. Seeger, J. Phys. -Condens. Mat. 10 (1998) 10493.

Google Scholar

[20] R. Saniz, B. Barbiellini, P. Platzman and A. J. Freeman, Phys. Rev. Lett. 99 (2007) 096101.

DOI: 10.1103/physrevlett.100.019902

Google Scholar

[21] D. B. Cassidy and A. P. Mills, Jr., Nature, 449 (2007) 195.

Google Scholar

[22] X. Hong, Y. C. Jean, H. Yang, S. S. Jordan and W. J. Koros, Macromolecules 29 (1996) 7859.

Google Scholar

[23] R. Zhang, H. Cao, H. Chen, P. Mallon, Y. He, T. C. Sandreczki, R. J. Richardson, Y. C. Jean, R. Suzuki, T. Ohdaira and B. Nielsen, Radiat. Chem. Phys. 58 (2000) 639.

DOI: 10.1016/s0969-806x(00)00235-8

Google Scholar

[24] H. Chen, R. Zhang, Y. Li, J. Zhang, Y. C. Wu, T. C. Sandreczki, P. E. Mallon, R. Suzuki, T. Ohdaira, X. Gu, T. Nguyen, and Y. C. Jean, Mater. Sci. Forum, 445-446 (2004) 274.

DOI: 10.4028/www.scientific.net/msf.445-446.274

Google Scholar

[25] P. Kirkegaard, M. Eldrup, O. E. Mogensen and N. J. Pedersen, Comput. Phys. Commun. 23 (1981) 307.

Google Scholar

[26] P. Kirkegaard and M. Eldrup, Comput. Phys. Commmun. 3 (1972) 240.

Google Scholar

[27] P. W. Zitzewitz, J. C. Van House, A. Rich and D. W. Gidley, Phys. Rev. Lett. 43 (1979) 1281.

Google Scholar

[28] J. Van House and P. W. Zitzewitz, Phys. Rev. A, 29 (1984) 96.

Google Scholar

[29] A. Rich, J. Van House, D. W. Gidley, R. S. Conti and P. W. Zitzewitz, Appl. Phys. A, 43, (1987) 275.

Google Scholar

[30] M. Quack, J. Stohner and M. Willeke, Annu. Rev. Phys. Chem. 59 (2008) 741.

Google Scholar

[31] R. Bast, A. Koers, A. S. P. Gomes, M. Ilias, L. Visscher, P. Schwerdtfeger and T. Saue, Phys. Chem. Chem. Phys. 13 (2011) 865.

DOI: 10.1039/c0cp01483d

Google Scholar

[32] M. Deutsch, B Gillon, N. Claiser, J. -M. Gillet, C. Lecomte and M. Souhassou, IUCrJ, 1 (2014) 194.

DOI: 10.1107/s2052252514007283

Google Scholar