[1]
A. Ball, M.M. Hutchison, Superplasticity in the aluminum-zinc eutectoid, Met. Sci. 3 (1969) 1-7.
Google Scholar
[2]
A.K. Mukherjee, The rate controlling mechanism in superplasticity, Mat. Sci. Eng. 8 (1971) 83-89.
Google Scholar
[3]
R.C. Gifkins, Grain-boundary sliding and its accommodation during creep and superplasticity, Metall. Trans. A 7 (1976) 1225-1232.
DOI: 10.1007/bf02656607
Google Scholar
[4]
M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metall. 21 (1973) 149-163.
DOI: 10.1016/0001-6160(73)90057-6
Google Scholar
[5]
J.R. Spingarn, W.D. Nix, Diffusional creep and diffusionally accommodated grain rearrangement, Acta Metall. 26 (1978) 1389-1398.
DOI: 10.1016/0001-6160(78)90154-2
Google Scholar
[6]
T.G. Langdon, A unified approach to grain boundary sliding in creep and su- perplasticity, Acta Metall. Mater. 42 (1994) 2437-2443.
DOI: 10.1016/0956-7151(94)90322-0
Google Scholar
[7]
T.H. Alden, The origin of superplasticity in the Sne5%Bi alloy, Acta Metall. 15 (1967) 469-480.
DOI: 10.1016/0001-6160(67)90078-8
Google Scholar
[8]
D. Lee, The nature of superplastic deformation in the Mg-Al eutectic, Acta Metall. 17 (1969) 1057-1069.
DOI: 10.1016/0001-6160(69)90051-0
Google Scholar
[9]
K. Sotoudeh, P.S. Bate, Diffusion creep and superplasticity in aluminium alloys, Acta Mater 58 (2010) 1909-(1920).
DOI: 10.1016/j.actamat.2009.11.034
Google Scholar
[10]
M.A. Rust, R.I. Todd, Surface studies of Region II superplasticity of AA5083 in shear: confirmation of diffusion creep, grain neighbor switching and absence of dislocation activity, Acta Mater 59 (2011) 5159-5170.
DOI: 10.1016/j.actamat.2011.04.051
Google Scholar
[11]
M.J. Mayo, W.D. Nix, Direct observation of superplastic flow mechanism in torsion, Acta Metall. 37 (1989) 1121e1134.
DOI: 10.1016/0001-6160(89)90108-9
Google Scholar
[12]
H. Muto, M. Sakai, The large-scale deformation of polycrystalline aggregates: cooperative grain-boundary sliding, Acta Mater 48 (2000) 4161-4167.
DOI: 10.1016/s1359-6454(00)00169-5
Google Scholar
[13]
H. Masuda, S. Taniguchi, E. Sato, Y. Sugino, S. Ukai, Two-dimensional observation of grain boundary sliding of ODS ferritic steel in high temperature tension, Mater. Trans. 55 (2014) 1599-1605.
DOI: 10.2320/matertrans.m2014115
Google Scholar
[14]
H. Masuda, H. Tobe, E. Sato, Y. Sugino, S. Ukai, Mantle region accommodating two-dimensional grain boundary sliding in ODS ferritic steel, Philos. Mag. Lett. 95 (2015) 359-366.
DOI: 10.1080/09500839.2015.1067732
Google Scholar
[15]
H. Masuda, H. Tobe, E. Sato, Y. Sugino, S. Ukai, Two-dimensional grain boundary sliding and mantle dislocation accommodation in ODS ferritic steel, Acta Mater 120 (2016) 205-215.
DOI: 10.1016/j.actamat.2016.08.034
Google Scholar
[16]
H. Masuda, H. Tobe, E. Sato, Y. Sugino, S. Ukai, Transgranular dislocation activities and substructural evolutions accommodating two-dimensional grain boundary sliding in ODS ferritic steel, Acta Mater 132 (2017) 245-254.
DOI: 10.1016/j.actamat.2017.04.047
Google Scholar
[17]
H. Masuda, H. Tobe, E. Sato, Y. Sugino, S. Ukai, Direct detection of diffusional mass flux accommodating rigid grain boundary sliding, Nature, submitted.
DOI: 10.1016/j.actamat.2019.06.049
Google Scholar
[18]
H. Okada, S. Ukai, M. Inoue, Effects of grain morphology and texture on high temperature deformation in oxide dispersion strengthened ferritic steels, J. Nucl. Sci. Technol. 33 (1996) 936-943.
DOI: 10.1080/18811248.1996.9732035
Google Scholar
[19]
W.A. Rachinger, Relative grain translations in the plastic flow of aluminium. J. Inst. Metals, 81 (1952-1953) 33-41.
Google Scholar
[20]
I.M. Lifshitz, On the theory of diffusion-viscous flow of polycrystalline bodies. Soviet Physics JETP, 17 (1963). 909-920.
Google Scholar
[21]
R.L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials. J. App. Phys. 34, (1963) 1679-1682.
DOI: 10.1063/1.1702656
Google Scholar