In Situ Observation of the Phase Transformations in Ti15Mo Alloy Deformed by High Pressure Torsion

Article Preview

Abstract:

Metastable β-Ti alloys including Ti15Mo alloy are perspective candidates for use in medical applications. During thermal treatment Ti15Mo alloy undergoes various phase transformations. After solution treatment it contains metastable β-phase and ω-phase. During annealing the ω-phase partially dissolves as well as stable α-phase particles are formed. The solution treated Ti15Mo alloy was deformed by high pressure torsion (HPT) at room temperature. Significant grain refinement with grain size of ~100 nm was achieved even after 1/4 of HPT rotation. The effect of the ultra-fine grained (UFG) structure achieved by HPT on the phase transformations was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during in-situ heating. High density of lattice defects, dense network of grain boundaries as well as ongoing recovery and recrystallization upon heating significantly affected the phase transitions. Observation of the microstructure during in-situ heating in TEM revealed no representative changes in transparent part of the sample due to the “thin foil effect”.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

206-211

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.J. Donachie, Titanium: A technical guide, 2nd ed., ASM International, (2000).

Google Scholar

[2] D.F. Williams, Titanium for medical applications, Springer-Verlag, Berlin, (2001).

Google Scholar

[3] D. de Fontaine , N.E. Paton, J.C. Williams, The omega phase transformation in titanium alloys as an example of displacement controlled reactions, Acta Metall. 19 (1971) 1153-1162.

DOI: 10.1016/0001-6160(71)90047-2

Google Scholar

[4] P. Zháňal, P. Harcuba, M. Hájek, B. SMola, J. Stráský, J. Šmilauerová, J. Veselý, M. Janeček, Evolution of ω phase during heating of metastable β titanium alloy Ti-15Mo, J. Mater. Sci. 53 (2018) 837-845.

DOI: 10.1007/s10853-017-1519-2

Google Scholar

[5] F. Prima, P. Vermaut, D. Ansel, J. Debuigne, ω precipitation in a beta metastable titanium alloy, resistometric study, Mater. Trans. JIN 41 (2000), 1092-1097.

DOI: 10.2320/matertrans1989.41.1092

Google Scholar

[6] P. Zháňal, P. Harcuba, J. Šmilauerová, J. Stráský, M. Janeček, B. Smola, M. Hájek, Phase transformations in Ti-15Mo investigated by in-situ electrical resistance, Acta Phys. Pol. A 128 (2015) 779-782.

DOI: 10.12693/aphyspola.128.779

Google Scholar

[7] F. Prima, P. Vermaut, G. Texier, D. Ansel, T. Gloriant, Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy, Scr. Mater. 54 (2006) 645-648.

DOI: 10.1016/j.scriptamat.2005.10.024

Google Scholar

[8] S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, H.L. Fraser, ω-assisted nucleation and growth of α-precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy, Acta Mater. 57 (2009) 2136-2147.

DOI: 10.1016/j.actamat.2009.01.007

Google Scholar

[9] Y. Zheng et al., Role of ω phase in the formatioon of extremely refined intragranular α precipitates in metastable β-titanium alloys, Acta Mater. 103 (2016) 850-858.

DOI: 10.1016/j.actamat.2015.11.020

Google Scholar

[10] T. Makino, R. Chikaizumi, T. Nagaoka, T. Furuhara, T. Makino, Microstructure dvelopment in a thermomechanically processed Ti-15V-3Cr-3Sn-3Al alloy, Mater. Sci. Eng. A 213 (1996) 51-60.

DOI: 10.1016/0921-5093(96)10236-7

Google Scholar

[11] Y. Kawabe, S. Muneki, Strengthening and toughening of titanium alloys, ISIJ International 31 (1991) 785-791.

DOI: 10.2355/isijinternational.31.785

Google Scholar

[12] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progr. Mater. Sci 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[13] A.P. Zhilayev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamental and applicatons, Prog. Mater. Sci. 53 (2008) 893-979.

Google Scholar

[14] K. Václavová, J. Stráský, P. Zháňal, J. Veselý, V. Polyakova, I. Semenova, M. Janeček, Ultra-fine grained microstructure of metastable beta Ti-15Mo alloy and its effect on phase transformations, IOP Conf. Series: Mater. Sci. Eng. A 194 (2017).

DOI: 10.1088/1757-899x/194/1/012021

Google Scholar

[15] B. Jiang, K. Tsuchiya, S. Emura, X. Min, Effect of high-pressure torsion process on precipitation behavior of α phase in β-type Ti-15Mo alloy, Mater. Trans. 55 (2014) 877-884.

DOI: 10.2320/matertrans.m2013469

Google Scholar

[16] L. Li, W. Mei, H. Xing, X. L. Wang, J. Sun, Zigzag configuration of mechanical twin and stress-induced omega phase in metastable β Ti-34Nb (at%) alloy, J. Alloy. Compd. 625 (2015) 188-192.

DOI: 10.1016/j.jallcom.2014.11.082

Google Scholar

[17] X. L. Wang, L. Li, W. Mei, W. L. Wang, and J. Sun. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable Ti-V alloys. Mater. Charact. 107 (2015) 149-155.

DOI: 10.1016/j.matchar.2015.06.038

Google Scholar

[18] T.W. Duerig, J. Albrecht, D. Richter, P. Fischer, Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al, Acta Metall., 30 (1982) 2161-2172.

DOI: 10.1016/0001-6160(82)90137-7

Google Scholar

[19] A. Zafari, X.S. Wei, W. Xu, K. Xia, Formation of nanocrystalline β structure in metastable beta Ti alloy during high pressure torsion: The role played by stress induced martensitic transformation, Acta Mater. 97 (2015) 146-155.

DOI: 10.1016/j.actamat.2015.06.042

Google Scholar

[20] Y. B. Wang, Y. H. Zhao, Q. Lian, X.Z. Liao, R.Z. Valiev, S.P. Ringer, Y.T. Zhu, E.J. Lavernia, Grain size and reversible beta-to-omega phase transformation in a Ti alloy, Scripta Mater. 63 (2010) 613-616.

DOI: 10.1016/j.scriptamat.2010.05.045

Google Scholar

[21] F. Prima, P. Vermaut, I. Thibon, D. Ansel, J. Debuigne, T. Gloriant, Nanostructured Metastable β-Titanium Based Alloy, J. Metastable Nanocryst. Mater. 12 (2002) 307-314.

DOI: 10.4028/www.scientific.net/jmnm.13.307

Google Scholar

[22] X.H. An, Q.Y. Lin, G. Sha, M.X. Huang, S.P. Ringer, Y.T. Zhu, X.Z. Liao, Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion, Acta Mater. 109 (2016) 300-313.

DOI: 10.1016/j.actamat.2016.02.045

Google Scholar

[23] D.J. Lewellyn, K.B. Belay, M.C. Ridgway, In-situ transmission electron microscopy of the solid-phase epitaxial growth of GaAs: sample preparation and artifact characterization, 10th Australian conference on Nuclear Techniques of Analysis – proceedings, 24-26 November 1997, Canberra, Australia, P1.43 222-225.

DOI: 10.1557/proc-480-257

Google Scholar