[1]
M.J. Donachie, Titanium: A technical guide, 2nd ed., ASM International, (2000).
Google Scholar
[2]
D.F. Williams, Titanium for medical applications, Springer-Verlag, Berlin, (2001).
Google Scholar
[3]
D. de Fontaine , N.E. Paton, J.C. Williams, The omega phase transformation in titanium alloys as an example of displacement controlled reactions, Acta Metall. 19 (1971) 1153-1162.
DOI: 10.1016/0001-6160(71)90047-2
Google Scholar
[4]
P. Zháňal, P. Harcuba, M. Hájek, B. SMola, J. Stráský, J. Šmilauerová, J. Veselý, M. Janeček, Evolution of ω phase during heating of metastable β titanium alloy Ti-15Mo, J. Mater. Sci. 53 (2018) 837-845.
DOI: 10.1007/s10853-017-1519-2
Google Scholar
[5]
F. Prima, P. Vermaut, D. Ansel, J. Debuigne, ω precipitation in a beta metastable titanium alloy, resistometric study, Mater. Trans. JIN 41 (2000), 1092-1097.
DOI: 10.2320/matertrans1989.41.1092
Google Scholar
[6]
P. Zháňal, P. Harcuba, J. Šmilauerová, J. Stráský, M. Janeček, B. Smola, M. Hájek, Phase transformations in Ti-15Mo investigated by in-situ electrical resistance, Acta Phys. Pol. A 128 (2015) 779-782.
DOI: 10.12693/aphyspola.128.779
Google Scholar
[7]
F. Prima, P. Vermaut, G. Texier, D. Ansel, T. Gloriant, Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy, Scr. Mater. 54 (2006) 645-648.
DOI: 10.1016/j.scriptamat.2005.10.024
Google Scholar
[8]
S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, H.L. Fraser, ω-assisted nucleation and growth of α-precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy, Acta Mater. 57 (2009) 2136-2147.
DOI: 10.1016/j.actamat.2009.01.007
Google Scholar
[9]
Y. Zheng et al., Role of ω phase in the formatioon of extremely refined intragranular α precipitates in metastable β-titanium alloys, Acta Mater. 103 (2016) 850-858.
DOI: 10.1016/j.actamat.2015.11.020
Google Scholar
[10]
T. Makino, R. Chikaizumi, T. Nagaoka, T. Furuhara, T. Makino, Microstructure dvelopment in a thermomechanically processed Ti-15V-3Cr-3Sn-3Al alloy, Mater. Sci. Eng. A 213 (1996) 51-60.
DOI: 10.1016/0921-5093(96)10236-7
Google Scholar
[11]
Y. Kawabe, S. Muneki, Strengthening and toughening of titanium alloys, ISIJ International 31 (1991) 785-791.
DOI: 10.2355/isijinternational.31.785
Google Scholar
[12]
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progr. Mater. Sci 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[13]
A.P. Zhilayev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamental and applicatons, Prog. Mater. Sci. 53 (2008) 893-979.
Google Scholar
[14]
K. Václavová, J. Stráský, P. Zháňal, J. Veselý, V. Polyakova, I. Semenova, M. Janeček, Ultra-fine grained microstructure of metastable beta Ti-15Mo alloy and its effect on phase transformations, IOP Conf. Series: Mater. Sci. Eng. A 194 (2017).
DOI: 10.1088/1757-899x/194/1/012021
Google Scholar
[15]
B. Jiang, K. Tsuchiya, S. Emura, X. Min, Effect of high-pressure torsion process on precipitation behavior of α phase in β-type Ti-15Mo alloy, Mater. Trans. 55 (2014) 877-884.
DOI: 10.2320/matertrans.m2013469
Google Scholar
[16]
L. Li, W. Mei, H. Xing, X. L. Wang, J. Sun, Zigzag configuration of mechanical twin and stress-induced omega phase in metastable β Ti-34Nb (at%) alloy, J. Alloy. Compd. 625 (2015) 188-192.
DOI: 10.1016/j.jallcom.2014.11.082
Google Scholar
[17]
X. L. Wang, L. Li, W. Mei, W. L. Wang, and J. Sun. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable Ti-V alloys. Mater. Charact. 107 (2015) 149-155.
DOI: 10.1016/j.matchar.2015.06.038
Google Scholar
[18]
T.W. Duerig, J. Albrecht, D. Richter, P. Fischer, Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al, Acta Metall., 30 (1982) 2161-2172.
DOI: 10.1016/0001-6160(82)90137-7
Google Scholar
[19]
A. Zafari, X.S. Wei, W. Xu, K. Xia, Formation of nanocrystalline β structure in metastable beta Ti alloy during high pressure torsion: The role played by stress induced martensitic transformation, Acta Mater. 97 (2015) 146-155.
DOI: 10.1016/j.actamat.2015.06.042
Google Scholar
[20]
Y. B. Wang, Y. H. Zhao, Q. Lian, X.Z. Liao, R.Z. Valiev, S.P. Ringer, Y.T. Zhu, E.J. Lavernia, Grain size and reversible beta-to-omega phase transformation in a Ti alloy, Scripta Mater. 63 (2010) 613-616.
DOI: 10.1016/j.scriptamat.2010.05.045
Google Scholar
[21]
F. Prima, P. Vermaut, I. Thibon, D. Ansel, J. Debuigne, T. Gloriant, Nanostructured Metastable β-Titanium Based Alloy, J. Metastable Nanocryst. Mater. 12 (2002) 307-314.
DOI: 10.4028/www.scientific.net/jmnm.13.307
Google Scholar
[22]
X.H. An, Q.Y. Lin, G. Sha, M.X. Huang, S.P. Ringer, Y.T. Zhu, X.Z. Liao, Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion, Acta Mater. 109 (2016) 300-313.
DOI: 10.1016/j.actamat.2016.02.045
Google Scholar
[23]
D.J. Lewellyn, K.B. Belay, M.C. Ridgway, In-situ transmission electron microscopy of the solid-phase epitaxial growth of GaAs: sample preparation and artifact characterization, 10th Australian conference on Nuclear Techniques of Analysis – proceedings, 24-26 November 1997, Canberra, Australia, P1.43 222-225.
DOI: 10.1557/proc-480-257
Google Scholar