[1]
R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer and Y.T. Zhu, Fundamentals of Superior Properties in Bulk NanoSPD Materials, Mater. Res. Lett. 4 (2017) 1-21.
DOI: 10.1080/21663831.2015.1060543
Google Scholar
[2]
E.V. Naydenkin, I.V. Ratochka, G.P. Grabovetskaya, The Aspects of Practical Application of Ultrafine-Grained Titanium Alloys Produced Severe Plastic Deformation, Mater. Sci. Forum. 667-669 (2011) 1183-1188.
DOI: 10.4028/www.scientific.net/msf.667-669.1183
Google Scholar
[3]
H. Yilmazer, M. Niinomi, M. Nakai, K. Cho, J. Hieda, Y. Todaka, T. Miyazaki, Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion, Mater. Sci. Eng., C. 33 (2013) 2499-2507.
DOI: 10.1016/j.msec.2013.01.056
Google Scholar
[4]
F. Garofalo, Fundamentals of Creep and Creep-Rupture in Metals, McMillan, New York, (1965).
Google Scholar
[5]
P.V. Geld, P.A. Ryabov, E.S. Kodes, Hydrogen and imperfections of metal structure, Metallurgiya, Moscow, (1979).
Google Scholar
[6]
B.A. Kolachev, Hydrogen embrittlement of metals, Metallurgiya, Moscow, 1985 [in Russian].
Google Scholar
[7]
Y. Zong, K. Wu, Thermo hydrogen treatment for microstructure refinement and mechanical properties improvement of Ti-6Al-4V alloy, Mater. Sci. Eng., A. 703 (2017) 430-437.
DOI: 10.1016/j.msea.2017.07.076
Google Scholar
[8]
E.N. Stepanova, G.P. Grabovetskaya, O.V. Zabudchenko, I.P. Mishin, Strain behavior of the hydrogenated submicrocrystalline Ti-6Al-4V alloy, Rus. Phys. J. 54 (2011) 690-696.
DOI: 10.1007/s11182-011-9671-7
Google Scholar
[9]
S.A. Saltikov, Stereometric metallography. Moscow, Metallurgiya, 1970 [in Russian].
Google Scholar
[10]
V.M. Rozenberg, Creep of metals. Moscow, Metallurgiya, 1967 [in Russian].
Google Scholar
[11]
H.J. Frost, M.F. Ashby, Deformation-mechanism maps: The plasticity and creep of metals and ceramics, Pergamon Press, New York, (1982).
Google Scholar