Atomic Force Microscopy Studies of Severely Deformed Amorphous TiNiCu Alloy

Article Preview

Abstract:

The amorphous Ti50Ni25Cu25 alloy was subjected to high pressure torsion (HPT) processing. TEM studies revealed in the structure of the HPT-processed samples the presence of nanocrystals with a size of about 5 nm and amorphous clusters with a size of about 10-30 nm. Atomic force microscopy (AFM) was used to study the surface morphology of foils prepared by ion polishing from the initial amorphous ribbons and HPT-processed samples. AFM images of the foil prepared from the initial ribbon revealed a smooth surface with an average roughness of 0.3 nm. A totally different surface morphology was observed for the foil prepared from the HPT-processed state by the same regime of ion polishing: the presence of holes with a depth of 2-4 nm and a width of 10-30 nm. The changes in the surface morphology, namely the holes-like surface morphology of the HPT-processed state, could be explained by a complex transformation of the amorphous structure, and probably by the variation and redistribution of free volume, which leads to the emergence of a cluster contrast in TEM images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-205

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.L. Greer, Metallic glasses, Science 267 (1995) 1947-(1953).

Google Scholar

[2] G.E. Abrosimova, Evolution of the structure of amorphous alloys, Phys-Usp. 54 (2011) 1227-1242.

DOI: 10.3367/ufne.0181.201112b.1265

Google Scholar

[3] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[4] D.V. Louzguine-Luzgin, A. Inoue, Chapter Three - Bulk Metallic Glasses: Formation, Structure, Properties, and Applications, in: K.H.J. Buschow (Ed.), Handb. Magn. Mater., Volume 21, North Holland, 2013, pp.131-171.

DOI: 10.1016/b978-0-444-59593-5.00003-9

Google Scholar

[5] R.Z. Valiev, V.G. Pushin, D.V. Gunderov, A.G. Popov, The use of severe deformations for preparing bulk nanocrystalline materials from amorphous alloys, Dokl. Phys. 49 (2004) 519-521.

DOI: 10.1134/1.1810577

Google Scholar

[6] R.Z. Valiev, D.V. Gunderov, A.P. Zhilyaev, A.G. Popov, V.G. Pushin, Nanocrystallization induced by severe plastic deformation of amorphous alloys, J. Metast. Nanocryst. Mater. 22 (2004) 21-24.

DOI: 10.4028/www.scientific.net/jmnm.22.21

Google Scholar

[7] W. Li, X. Li, D. Guo, K. Sato, D.V. Gunderov, V.V. Stolyarov, X. Zhang, Atomic-scale structural evolution in amorphous Nd9Fe85B6Nd9Fe85B6 subjected to severe plastic deformation at room temperature, Appl. Phys. Lett. 94 (2009) 231904.

DOI: 10.1063/1.3152013

Google Scholar

[8] G.E. Abrosimova, A.S. Aronin, S.V. Dobatkin, S.D. Kaloshkin, D.V. Matveev, O.G. Rybchenko, E.V. Tatiyanin, I.I. Zverkova, The formation of nanocrystalline structure in amorphous Fe-Si-B Alloy by severe plastic deformation, J. Metast. Nanocryst. Mater. 24-25 (2005).

DOI: 10.4028/www.scientific.net/jmnm.24-25.69

Google Scholar

[9] A.M. Glezer, R.V. Sundeev, A.V. Shalimova, The cyclic character of phase transformations of the crystal ⇔ amorphous state type during severe plastic deformation of the Ti50Ni25Cu25 alloy, Dokl. Phys. 56 (2011) 476-478.

DOI: 10.1134/s1028335811090035

Google Scholar

[10] X.D. Wang, Q.P. Cao, J.Z. Jiang, H. Franz, J. Schroers, R.Z. Valiev, Y. Ivanisenko, H. Gleiter, H.-J. Fecht, Atomic-level structural modifications induced by severe plastic shear deformation in bulk metallic glasses, Scr. Mater. 64 (2011) 81-84.

DOI: 10.1016/j.scriptamat.2010.09.015

Google Scholar

[11] F. Meng, K. Tsuchiya, I. Seiichiro, Y. Yokoyama, Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass, Appl. Phys. Lett. 101 (2012) 121914.

DOI: 10.1063/1.4753998

Google Scholar

[12] S.-H. Joo, D.-H. Pi, A. D. H. Setyawan, H. Kato, M. Janecek, Y.C. Kim, S. Lee, H.S. Kim, work-hardening induced tensile ductility of bulk metallic glasses via high-pressure torsion, Sci. Rep. 5 (2015) 9660.

DOI: 10.1038/srep09660

Google Scholar

[13] D.V. Gunderov, V.Yu. Slesarenko, A.A. Churakova, А.V. Lukyanov, E.P. Soshnikova, V.G. Pushin, R.Z. Valiev, Evolution of the amorphous structure in melt-spun Ti50Ni25Cu25 alloy subjected to high pressure torsion deformation, Intermetallics 66 (2015).

DOI: 10.1016/j.intermet.2015.06.013

Google Scholar

[14] D. Gunderov, V. Slesarenko, A. Lukyanov, A. Churakova, E. Boltynjuk, V. Pushin, E. Ubyivovk, A. Shelyakov, R. Valiev, Stability of an amorphous TiCuNi alloy subjected to high-pressure torsion at different temperatures, Adv. Eng. Mater. 17 (2015).

DOI: 10.1002/adem.201500216

Google Scholar

[15] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[16] E.V. Ubyivovk, E.V. Boltynjuk, D.V. Gunderov, A.A. Churakova, A.R. Kilmametov, R.Z. Valiev, HPT-induced shear banding and nanoclustering in a TiNiCu amorphous alloy, Mater. Lett. 209 (2017) 327-329.

DOI: 10.1016/j.matlet.2017.08.028

Google Scholar

[17] H. Gleiter, Nanoglasses: a new kind of noncrystalline materials, Beilstein J. Nanotechnol. 4 (2013) 517-533.

DOI: 10.3762/bjnano.4.61

Google Scholar