Influence of Stacking Fault Energy on Microstructure Formation and Strength Properties of Cu-Zn Alloy

Article Preview

Abstract:

In this paper we report a microstructure and strength properties investigations of a Cu-10 mass. % Zn alloy subjected to ECAP, with the aim of forming a UFG structure and enhancing the strength properties. The obtained results for this alloy having an average SFE value (35 mJ⋅m-2) are compared with the results obtained for pure UFG copper with a high SFE value equaled to 78 mJ⋅m-2. It is shown that the decrease in SFE value leads to more developed microstructure refinement, an increase in the density of dislocations and twins, which, in turn, provides an increase in strength characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-199

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, Z.F. Zhang, Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing, Acta Mater. 57 (2009) 1586-1601.

DOI: 10.1016/j.actamat.2008.12.002

Google Scholar

[2] Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, Y.T. Zhu, Determining the optimal stacking fault energy for achieving high ductility in ultrafine - grained Cu–Zn alloys, Mater. Sci. Eng. A 493 (2008) 123-129.

DOI: 10.1016/j.msea.2007.11.074

Google Scholar

[3] T. Ungar, L. Balogh, Y.T. Zhub, Z. Horita, C. Xud, T.G. Langdon, Using X-ray microdiffraction to determine grain sizes at selected positions in disks processed by high-pressure torsion, Mat. Sci. and Eng. A 444 (2007) 153–156.

DOI: 10.1016/j.msea.2006.08.059

Google Scholar

[4] X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gaoc, T.G. Langdon, The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu–Al alloys processed by high-pressure torsion, Scripta Materialia 64 (2011).

DOI: 10.1016/j.scriptamat.2011.01.041

Google Scholar

[5] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[6] C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li, S.X. Li, Deformation twinning in polycrystalline copper at room temperature and low strain rate, Acta Mater. 54 (2006) 655-665.

DOI: 10.1016/j.actamat.2005.10.002

Google Scholar

[7] L. Balogh, T. Ungar, Y.H. Zhao, Y.T. Zhu, Z. Horita, C. Xu, T.G. Langdon, Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper-zinc alloys, Acta Mater.56 (2008) 809-820.

DOI: 10.1016/j.actamat.2007.10.053

Google Scholar

[8] Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, Z.F. Zhang, Microstructure and mechanical properties of Cu and Cu-Zn alloys produced by equal channel angular pressing, Mat. Sci. and Eng. A 528 (2011) 4259-4267.

DOI: 10.1016/j.msea.2010.12.080

Google Scholar

[9] P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness, Mat. Sci. and Eng. A 529 (2011) 62-73.

Google Scholar

[10] P.Zhang, S.Qu, M.X. Yang, G.Yang, S.D.Wu, S.X.Li, Z.F. Zhang, Varying tensile fracture mechanisms of Cu and Cu–Zn alloys with reduced grain size: From necking to shearing instability, Mat. Sci. and Eng. A594 (2014) 309-320.

DOI: 10.1016/j.msea.2013.11.079

Google Scholar