Enhanced Optical Properties of Silicon Based Quantum Dot Heterostructures

Article Preview

Abstract:

New approaches to enhance properties of silicon based quantum dot heterostructures for optical device application were developed. That is strain driven heteroepitaxy, small-sized quantum dots, elemental compositions of the heterointerface, virtual substrate, plasmonic effects, and the quantum dot charging occupation with holes in epitaxially grown Ge quantum dots (QDs) on Si (100). Experiments have shown extraordinary optical properties of Ge/Si QDs heterostructures and mid-infrared quantum dot photodetectors performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-74

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O.G. Schmidt, U. Denker, K. Eberl, O. Kienzle, F. Ernst, Effect of overgrowth temperature on the photoluminescence of Ge/Si islands. Appl. Phys. Lett. 77 (2000) 2509-2511.

DOI: 10.1063/1.1318729

Google Scholar

[2] D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H.H. Solak, H. Sigg, R.T. Lechner, E. Wintersberger, S. Birner, V. Holý, G. Bauer, Three-dimensional Si/Ge quantum dot crystals. Nano Lett. 7 (2007) 3150–3156.

DOI: 10.1021/nl0717199

Google Scholar

[3] R.O. Rezaev, S. Kiravittaya, V.M. Fomin, A. Rastelli, O.G. Schmidt, Engineering self-assembled SiGe islands for robust electron confinement in Si, Phys. Rev. B. 82 (2010) 153306–4.

DOI: 10.1103/physrevb.82.153306

Google Scholar

[5] A.V. Dvurechenskii, A.I. Yakimov, Silicon-Based Nanoheterostructures with Quantum Dots, in: A.V. Latyshev, A.V. Dvurechenski, A.L. Aseev (Eds.), Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications. Elsevier, Amsterdam. 2017. pp.59-99.

DOI: 10.1016/b978-0-12-810512-2.00004-4

Google Scholar

[5] A.F. Zinovieva, A.I. Nikiforov, V.A. Timofeev, A.V. Nenashev, A.V. Dvurechensii, L.V. Kulik, Electron localization in Ge/Si heterostructures with double quantum dots detected by an electron spin resonance method, Phys. Rev. B. 88 (2013) 235308-8.

DOI: 10.1103/physrevb.88.235308

Google Scholar

[6] V.A. Zinovyev, A.F. Zinovieva, P.A. Kuchinskaya, Zh.V. Smagina, V.A. Armbrister, A.V. Dvurechenskii, O.M. Borodavchenko, V.D. Zhivulko, and A.V. Mudryi, Strain-induced improvement of photoluminescence from the groups of laterally ordered SiGe quantum dots. Appl. Phys. Lett. 110 (2017).

DOI: 10.1063/1.4977944

Google Scholar

[7] V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, Device model for quantum dot infrared photodetectors and their dark-current characteristics. Semicond. Sci. Technol. 16 (2001) 331-338.

DOI: 10.1088/0268-1242/16/5/309

Google Scholar

[8] A.V. Yakimov, V.V. Kirienko, V.A. Armbrister, A.A. Bloshkin, A.V. Dvurechenskii, and A.A. Shklyaev, Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors. Mater. Res. Express. 3 (2016) 105032–8.

DOI: 10.1088/2053-1591/3/10/105032

Google Scholar

[9] A.V. Barve, S. Krishna, Photovoltaic quantum dot quantum cascade infrared photodetector. Appl. Phys. Lett., 100 (2012) 021105-4.

DOI: 10.1063/1.3675905

Google Scholar

[10] A.I. Yakimov, V.V. Kirienko, A.A. Bloshkin, V.A. Armbrister, A.V. Dvurechenskii, and J.-M. Hartmann, Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmon. Optics Express, 25 (2017) 25602–25611.

DOI: 10.1364/oe.25.025602

Google Scholar

[11] A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, V. A. Armbrister,and A. V. Dvurechenskii. Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si. J. Appl. Phys., 122 (2017) 133101-7.

DOI: 10.1063/1.4986986

Google Scholar