Morphological and Structural Modifications of Si-Based Nanostructures Synthesized from Metal Silicide Templates in IP6, Acid and Metal Chloride Solutions

Article Preview

Abstract:

Powders consisting of Si-based nanostructures were synthesized by the extraction of Ca atoms from CaSi2 powders using an inositol hexakisphosphate (IP6) aqueous solution. The raw CaSi2 powders were simply immersed in a diluted IP6 solution, then dried. It is noted that the Si-based nanostructures were easily exfoliated from the powders to expose the surfaces corresponding to the Si {111} planes of the nanostructures. In addition, the Si-based nanostructures were also synthesized by metal atom extraction from SrSi2, BaSi2 and Mg2Si using the IP6 aqueous solution. It was found that the nanostructures mainly including the amorphous Si-oxide phase were obtained for the IP6-treated SrSi2, BaSi2 and Mg2Si powders. Moreover, the amorphous Si oxide-based nanostructures were synthesized from CaSi2 using citric acid, malic acid, FeCl3 and FeCl2 aqueous solutions. It was demonstrated that the morphological and structural properties of the synthesized Si-based nanostructures depend on the silicide templates and the solutions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-67

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Huang, Y., K.-N. Tu: Silicon and Silicide Nanowires: Applications, Fabrication, and Properties,, Singapore, (2013).

Google Scholar

[2] H. Tatsuoka, W. Li, E. Meng, and D. Ishikawa, Syntheses of a Variety of Silicide Nanowire and Nanosheet Bundles, ECS Trans. 50 (2012) 3-10.

DOI: 10.1149/05006.0003ecst

Google Scholar

[3] H. Itahara and H. Nakano, Synthesis and optical properties of two-dimensional nanosilicon compounds, Jpn. J. Appl. Phys. 56 (2017) 05DA02-9.

DOI: 10.7567/jjap.56.05da02

Google Scholar

[4] E. Bonitz, Lepidoide, VI, Ein neuer Weg zur Herstellung von aktivem Silicium oder Siliciummonochlorid, Chem. Ber. 94 (1961) 220-225.

DOI: 10.1002/cber.19610940133

Google Scholar

[5] X. Meng, H. Imagawa, E. Meng, H. Suzuki, Y. Shirahashi, K. Nakane, H. Itahara, H. Tatsuoka, Formation of Si-based nanosheets by extraction of Ca from CaSi2 layers on Si substrates, J. Ceram. Soc. Jpn, 122 (2014) 618-621.

DOI: 10.2109/jcersj2.122.618

Google Scholar

[6] X. Meng, P. Yuan, K. Sasaki, K. Tsukamoto, S. Kusazaki, Y. Saito, Y. Kumazawa and H. Tatsuoka, Formation of Si-based Nanosheet Bundles and Morphological Modification of CaSi2 Crystals by Thermal Treatment using Chloride Compounds, e-J. Surf. Sci. Nanotech. 16 (2018).

DOI: 10.1380/ejssnt.2018.218

Google Scholar

[7] X. Meng, K. Sasaki, K. Sano, P. Yuan, and H. Tatsuoka, Synthesis of crystalline Si-based nanosheets by extraction of Ca from CaSi2 in inositol hexakisphosphate solution, Jpn J. Appl. Phys. 56 (2017) 05DE02-7.

DOI: 10.7567/jjap.56.05de02

Google Scholar

[8] Y. Kumazawa, K. Sasaki, P. Yuan, X. Meng, and H. Tatsuoka, Synthesis of powders consisting Si-based nanosheets using silicide powders as templates in acid solution, J. Soc. P. Tech., Jpn 53 (2016) 797-803.

DOI: 10.4164/sptj.53.797

Google Scholar

[9] M.K. Weldon, V.E. Marsico, Y.J. Chabal, A. Agarwal, D.J. Eaglesham, J. Sapjeta, W.L. Brown, D.C. Jacobson, Y. Caudano, S.B. Christman, and E. E. Chaban, On the mechanism of the hydrogen-induced exfoliation of silicon, J. Vac. Sci. Technol. B15 (1997).

DOI: 10.1109/soi.1997.634964

Google Scholar

[10] S. Yamanaka, H. Matsu-ura, M. Ishikawa, New deintercalation reaction of calcium from calcium disilicide, Mater. Res. Bull. 31 (1996) 307-316.

DOI: 10.1016/0025-5408(95)00195-6

Google Scholar

[11] H. Imagawa, N. Takahashi, T. Nonaka, Y. Kato, K. Nishikawa and H. Itahara, Synthesis of a calcium-bridged siloxene by a solid state reaction for optical and electrochemical properties, J. Mater. Chem. A, 3 (2015) 9411-9414.

DOI: 10.1039/c5ta00321k

Google Scholar

[12] H. D. Fuchs, M. Stutzmann, M. S. Brandt, M. Rosenbauer, 3. Weber, A. Breitschwerdt, P. Deak, and M. Cardona, Porous silicon and silowene: Vibrational and structural properties, Phys. Rev. B48 (1993) 8172-8189.

DOI: 10.1103/physrevb.48.8172

Google Scholar

[13] P. Yuan, R. Tamaki, S. Kusazaki, N. Atsumi, Y. Saito, Y. Kumazawa, N. Ahsan, Y. Okada, A. Ishida and H. Tatsuoka, Structural and Photoluminescence Properties of Si-based Nanosheet Bundles Rooted on Si Substrates, Jpn J. Appl. Phys. 57(2017).

DOI: 10.7567/jjap.57.04fj01

Google Scholar

[14] R. Fu, K. Zhang, R. P. Zaccaria, H. Huanga, Y. Xia, Z. Liu, Nano Energy 39 (2017) 546-553.

Google Scholar

[15] L. Sun, T. Su, L. Xu, M. Liu and H.-B. Du, Two-dimensional ultra-thin SiOx (0 < x < 2) nanosheets with longterm cycling stability as lithium ion battery anodes, Chem. Commun. 52 (2016) 4341-4344.

DOI: 10.1039/c6cc00723f

Google Scholar

[16] M. Chemla, S. Durand-Vidal, S. Zanna, S. Petitdidier, D. Levy, Silicon surface wet cleaning and chemical oxide growth by a novel treatment in aqueous chlorine solutions, Electrochimica Acta 49 (2004) 3545-3553.

DOI: 10.1016/j.electacta.2004.03.023

Google Scholar

[17] A. Stapf, P. Nattrodt and E. Krokez, On The Mechanism of the Anisotropic Dissolution of Silicon in Chlorine Containing Hydrofluoric Acid Solutions, J. Electrochem. Soc. 165 (2018) H3045-H3050.

DOI: 10.1149/2.0061804jes

Google Scholar