[1]
Y. Nagae, M. Kurosawa, S. Shibayama, M. Araidai, M. Sakashita, O. Nakatsuka, K. Shiraishi, S. Zaima, Density functional study for crystalline structures and electronic properties of Si1−xSnx binary alloys, Jpn. J. Appl. Phys. 55 (2016) 08PE04.
DOI: 10.7567/jjap.55.08pe04
Google Scholar
[2]
T. Nagai, T. Kaneko, Z. Liu, I. Turkevych, M. Kondo, Improvement of photoconductivity in Silicon Tin (SiSn) thin films, J. Non-Cryst. Solids 358 (2012) 2281-2284.
DOI: 10.1016/j.jnoncrysol.2011.12.096
Google Scholar
[3]
T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, 2nd ed., Binary Alloy Phase Diagrams, Vol.2, ASM International, Materials Park, Ohio (1990).
DOI: 10.1002/adma.19910031215
Google Scholar
[4]
A.A. Tonkikh, C. Eisenschmidt, V.G. Talalaev, N.D. Zakharov, J. Schilling, G. Schmidt, P. Werner, Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing Appl. Phys. Lett. 103 (2013) 032106.
DOI: 10.1063/1.4813913
Google Scholar
[5]
R. Ragan, K.S. Min, H.A. Atwater, Direct energy gap group IV semiconductor alloys and quantum dot arrays in SnxGe1−x/Ge and SnxSi1−x/Si alloy systems, Mater. Sci. Eng., B 87 (2001) 204 – 213.
DOI: 10.1016/s0921-5107(01)00732-2
Google Scholar
[6]
A.A. Tonkikh, N.D. Zakharov, C. Eisenschmidt, H.S. Leipner, P. Werner, Aperiodic SiSn/Si multilayers for thermoelectric applications, J. Cryst. Growth 392 (2014) 49–51.
DOI: 10.1016/j.jcrysgro.2014.01.047
Google Scholar
[7]
A.S. Gouralnik, S.A. Dotsenko, N.G. Galkin, V.A. Ivanov, V.S. Plotnikov, E.V. Pustovalov, A.I. Cherednichenko, A.K. Gutakovski, M.A. Neklyudova, Formation of iron and iron silicides on silicon and iron surfaces. Role of the deposition rate and volumetric effects, Appl. Phys. A 112 (2013).
DOI: 10.1007/s00339-012-7440-2
Google Scholar
[8]
M. Kurosawa, M. Kato, T. Yamaha, N. Taoka, O. Nakatsuka, Sh. Zaima, Low temperature growth of SiSn polycrystals with high Sn contents on insulating layers, 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), p.83.
DOI: 10.1109/istdm.2014.6874680
Google Scholar
[9]
A. R. Denton and N. W. Ashcroft, Vegard's law, Phys. Rev. A. 43 (1991) 3161–3164.
Google Scholar
[10]
N.G. Galkin, A.M. Maslov, A.V. Konchenko, Optical and photospectral properties of CrSi2 A-type epitaxial films on Si(111), Thin Sold Films 311 (1997) 230-238.
DOI: 10.1016/s0040-6090(97)00678-0
Google Scholar
[11]
M. H. Brodsky, K. Weiser, and G. D. Pettit, Structural, optical, and electrical properties of amorphous silicon films, Phys. Rev. B 1 (1970) 2632-2641.
DOI: 10.1103/physrevb.1.2632
Google Scholar
[12]
M. Kurosawa, M. Kato, T. Yamaha, N. Taoka, O. Nakatsuka, Sh. Zaima, Near-infrared light absorption by polycrystalline SiSn alloys grown on insulating layers, Appl. Phys. Lett. 106 (2015) 171908.
DOI: 10.1063/1.4919451
Google Scholar
[13]
P. A. Temple and C. E. Hathaway, Multiphonon Raman spectrum of silicon, Phys. Rev. B 7 (1973) 3685–3697.
DOI: 10.1103/physrevb.7.3685
Google Scholar
[14]
C.J. Buchenauer, M. Cardona, and F.H. Pollak, Raman scattering in gray teen, Phys. Rev. B 3 (1971) 1243-1244.
DOI: 10.1103/physrevb.3.1243
Google Scholar
[15]
Z. Iqbal, S. Vepřek, A.P. Webb, P. Capezzuto, Raman scattering from small particle size polycrystalline silicon, Solid State Commun. 37 (1981) 993-996.
DOI: 10.1016/0038-1098(81)91202-3
Google Scholar
[16]
Ch. Ossadnik, S. Vepřek, I. Gregora, Applicability of Raman scattering for the characterization of nanocrystalline silicon, Thin Solid Films 337 (1999) 148-151.
DOI: 10.1016/s0040-6090(98)01175-4
Google Scholar
[17]
S. Murase, T. Sunohara, T. Suemasu, Epitaxial growth and luminescence characterization of Si/β-FeSi2/Si multilayered structures by molecular beam epitaxy, J. Cryst. Growth 301-302 (2007) 676-679.
DOI: 10.1016/j.jcrysgro.2006.11.055
Google Scholar