SWIR-NIR Highly Absorbent Si1-xSnx Alloy Film on Si(100) Substrate: Crystal Structure, Optical Properties and Thermal Stability

Article Preview

Abstract:

Thin (200-600 nm) Si-Sn alloy films were grown under ultrahigh vacuum conditions by co-deposition of Si and Sn on the Si (100) substrate at room temperature. Investigations of the film structure by X-ray diffraction showed the preservation of the amorphous structure of Si-Sn films without the contribution of the Si1-xSnx alloy with sphalerite lattice at Sn concentration in the range of x=0.14-0.19. Analysis of optical spectra and calculations showed that an amorphous Si-Sn film with a Sn concentration of 19% is a semiconductor with indirect fundamental optical transition with very high absorption at photon energies 0.2 – 1.0 eV. It was found that precipitation of β-Sn occurs with an increase of Sn concentration up to 40%, which is accompanied by an increase in the reflection coefficient to 0.6-0.8 at photon energies below 0.8 eV. The limited temperature stability of amorphous Si-Sn films is shown for high-energy and long-term (10 minutes) laser irradiation due to the formation of metallic precipitates of β-Sn.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-94

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Nagae, M. Kurosawa, S. Shibayama, M. Araidai, M. Sakashita, O. Nakatsuka, K. Shiraishi, S. Zaima, Density functional study for crystalline structures and electronic properties of Si1−xSnx binary alloys, Jpn. J. Appl. Phys. 55 (2016) 08PE04.

DOI: 10.7567/jjap.55.08pe04

Google Scholar

[2] T. Nagai, T. Kaneko, Z. Liu, I. Turkevych, M. Kondo, Improvement of photoconductivity in Silicon Tin (SiSn) thin films, J. Non-Cryst. Solids 358 (2012) 2281-2284.

DOI: 10.1016/j.jnoncrysol.2011.12.096

Google Scholar

[3] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, 2nd ed., Binary Alloy Phase Diagrams, Vol.2, ASM International, Materials Park, Ohio (1990).

DOI: 10.1002/adma.19910031215

Google Scholar

[4] A.A. Tonkikh, C. Eisenschmidt, V.G. Talalaev, N.D. Zakharov, J. Schilling, G. Schmidt, P. Werner, Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing Appl. Phys. Lett. 103 (2013) 032106.

DOI: 10.1063/1.4813913

Google Scholar

[5] R. Ragan, K.S. Min, H.A. Atwater, Direct energy gap group IV semiconductor alloys and quantum dot arrays in SnxGe1−x/Ge and SnxSi1−x/Si alloy systems, Mater. Sci. Eng., B 87 (2001) 204 – 213.

DOI: 10.1016/s0921-5107(01)00732-2

Google Scholar

[6] A.A. Tonkikh, N.D. Zakharov, C. Eisenschmidt, H.S. Leipner, P. Werner, Aperiodic SiSn/Si multilayers for thermoelectric applications, J. Cryst. Growth 392 (2014) 49–51.

DOI: 10.1016/j.jcrysgro.2014.01.047

Google Scholar

[7] A.S. Gouralnik, S.A. Dotsenko, N.G. Galkin, V.A. Ivanov, V.S. Plotnikov, E.V. Pustovalov, A.I. Cherednichenko, A.K. Gutakovski, M.A. Neklyudova, Formation of iron and iron silicides on silicon and iron surfaces. Role of the deposition rate and volumetric effects, Appl. Phys. A 112 (2013).

DOI: 10.1007/s00339-012-7440-2

Google Scholar

[8] M. Kurosawa, M. Kato, T. Yamaha, N. Taoka, O. Nakatsuka, Sh. Zaima, Low temperature growth of SiSn polycrystals with high Sn contents on insulating layers, 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), p.83.

DOI: 10.1109/istdm.2014.6874680

Google Scholar

[9] A. R. Denton and N. W. Ashcroft, Vegard's law, Phys. Rev. A. 43 (1991) 3161–3164.

Google Scholar

[10] N.G. Galkin, A.M. Maslov, A.V. Konchenko, Optical and photospectral properties of CrSi2 A-type epitaxial films on Si(111), Thin Sold Films 311 (1997) 230-238.

DOI: 10.1016/s0040-6090(97)00678-0

Google Scholar

[11] M. H. Brodsky, K. Weiser, and G. D. Pettit, Structural, optical, and electrical properties of amorphous silicon films, Phys. Rev. B 1 (1970) 2632-2641.

DOI: 10.1103/physrevb.1.2632

Google Scholar

[12] M. Kurosawa, M. Kato, T. Yamaha, N. Taoka, O. Nakatsuka, Sh. Zaima, Near-infrared light absorption by polycrystalline SiSn alloys grown on insulating layers, Appl. Phys. Lett. 106 (2015) 171908.

DOI: 10.1063/1.4919451

Google Scholar

[13] P. A. Temple and C. E. Hathaway, Multiphonon Raman spectrum of silicon, Phys. Rev. B 7 (1973) 3685–3697.

DOI: 10.1103/physrevb.7.3685

Google Scholar

[14] C.J. Buchenauer, M. Cardona, and F.H. Pollak, Raman scattering in gray teen, Phys. Rev. B 3 (1971) 1243-1244.

DOI: 10.1103/physrevb.3.1243

Google Scholar

[15] Z. Iqbal, S. Vepřek, A.P. Webb, P. Capezzuto, Raman scattering from small particle size polycrystalline silicon, Solid State Commun. 37 (1981) 993-996.

DOI: 10.1016/0038-1098(81)91202-3

Google Scholar

[16] Ch. Ossadnik, S. Vepřek, I. Gregora, Applicability of Raman scattering for the characterization of nanocrystalline silicon, Thin Solid Films 337 (1999) 148-151.

DOI: 10.1016/s0040-6090(98)01175-4

Google Scholar

[17] S. Murase, T. Sunohara, T. Suemasu, Epitaxial growth and luminescence characterization of Si/β-FeSi2/Si multilayered structures by molecular beam epitaxy, J. Cryst. Growth 301-302 (2007) 676-679.

DOI: 10.1016/j.jcrysgro.2006.11.055

Google Scholar