Comparison of Crystal and Phonon Structures for Polycrystalline BaSi2 Films Grown by SPE Method on Si(111) Substrate

Article Preview

Abstract:

The search for inexpensive and efficient methods of forming thin BaSi2 films as a promising material for photovoltaic is an actual task. The co-deposition of Ba and Si atoms with alloy thickness of 100-120 nm on the silicon substrate at room temperature with following annealing (SPE method) was proposed. Ba-Si alloy compounds then were thermally annealed at different temperatures and three samples were formed: #1 at T = 600 ° C, #2 at T = 700 ° C and #3 at T = 800 ° C. Polycrystalline films with an orthorhombic BaSi2 structure were formed by XRD, UV-VIS, FIR and Raman spectroscopies data. BaSi2 grains in samples #1 and #2 have sizes 62-64 nm and 86 nm in the sample #3 from XRD data calculations by Scherrer formula. Proposed growth method resulted to strong compression of the BaSi2 unit cell volume on 1.78 – 2.70%. The strongest compression was observed after annealing at 800 °C, which was accompanied by desorption of a noticeable amount of barium and a strong decrease in the film thickness in the sample #3. The formation of nanosize Si clusters was confirmed by Raman data for samples #2 and #3, but they did not observed in the sample #3. So, the film, formed at 800 °C, is the most qualitative in terms of structure and single-phase BaSi2, but with strong decrease of initial Ba-Si alloy thickness due to Ba desorption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-54

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.B. Migas, V.L. Shaposhnikov, V.E. Borisenko, Isostructural BaSi2, BaGe2 and SrGe2: electronic and optical properties, Phys. Stat. Sol B. 244 (2007) 2611.

DOI: 10.1002/pssb.200642556

Google Scholar

[2] T. Nakamura, T. Suemasu, K.-I. Takakura, F. Hasegawa, A. Wakahara, M. Imai, Investigation of the energy band structure of orthorhombic BaSi2 by optical and electrical measurements and theoretical calculations, Applied Physics Letters 81 (2002).

DOI: 10.1063/1.1498865

Google Scholar

[3] A. Pokhrel, L. Samad, F. Meng and S. Jin, Synthesis and characterization of barium silicide (BaSi2) nanowire arrays for potential solar applications, Nanoscale 7 (2015) 17450.

DOI: 10.1039/c5nr03668b

Google Scholar

[4] M.A. Khan, K.O. Hara, W. Du, M. Baba, K. Nakamura, M. Suzuno, K. Toko, N. Usami, T. Suemasu, In-situ heavily p-type doping of over 1020 cm−3 in semiconducting BaSi2 thin films for solar cells applications, Applied Physics Letters 102 (2013).

DOI: 10.1063/1.4796142

Google Scholar

[5] R. Takabe, K. Nakamura, M. Baba, W. Du, M.A. Khan, K. Toko, M. Sasase, K.O. Hara, N. Usami, T. Suemasu. Fabrication and characterization of BaSi2 epitaxial films over 1 µm in thickness on Si(111), Jap. J. Appl. Phys. 53 (2014) 04ER04.

DOI: 10.7567/jjap.53.04er04

Google Scholar

[6] K. Morita, Y. Inomata, T. Suemasu, Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy, Thin Solid Films 508 (2006) 363.

DOI: 10.1016/j.tsf.2005.07.344

Google Scholar

[7] Y. Matsumoto, D. Tsukada, R. Sasaki, M. Takeishi, T. Suemasu, Photoresponse Properties of Semiconducting BaSi2 Epitaxial Films Grown on Si(111) Substrates by Molecular Beam Epitaxy Applied Physics Express 2 (2009) 021101.

DOI: 10.1143/apex.2.021101

Google Scholar

[8] D.V. Fomin, V.L. Dubov, K.N. Galkin, N.G. Galkin, R.I. Batalov and V.A. Shustov, Formation and properties of crystalline BaSi2 thin films obtained by solid phase epitaxy on Si(111) JJAP Conf. Proc. 5 (2017) 011203.

DOI: 10.56646/jjapcp.5.0_011203

Google Scholar

[9] D.V. Fomin, V.L. Dubov, K.N. Galkin, D.L. Goroshko, A.M. Maslov, N.G. Galkin, R.I. Batalov and V.A. Shustov, Formation, structure and optical properties of nanocrystalline BaSi2 films on Si(111) substrate Sol. St. Phenom. 245 (2016) 42-48.

DOI: 10.4028/www.scientific.net/ssp.245.42

Google Scholar

[10] R. Mcgehee, J. Renault, The Use of Standard Deviation of X-ray Diffraction Lines as a Measure of Broadening in the Scherrer Equation: A Curve Fitting Method, J. Appl. Cryst. 5 (1972) 365.

DOI: 10.1107/s002188987200977x

Google Scholar

[11] Crystallography Open Database (COD), http://www.crystallography.net #8103005 Ba2Si4.

Google Scholar

[12] V.I. Gavrilenko, A.M. Grekhov, D.V. Korbutyk, and V.G. Litovchenko, Optical Properties of Semiconductors: A Handbook (Naukova Dumka, Kiev, 1987, 489 P.) [in Russian].

Google Scholar

[13] M. Somer, Vibrational spectra of the cluster Anions [E4]4- in the metallic Sodium and Barium compounds Na4E4 and Ba2E4 (E = Si, Ge), Z. Anorg. Allg. Chem. 626 (2000) 2478-2480.

DOI: 10.1002/1521-3749(200012)626:12<2478::aid-zaac2478>3.0.co;2-a

Google Scholar

[14] Y. Terai, H. Yamaguchi, H. Tsukamoto, N. Murakoso, M. Iinuma, and T. Suemasu, Polarized Raman spectra of BaSi2 epitaxial film grown by molecular epitaxy, Jap. J. Appl. Phys. 56 (2017) 05DD02(1-4).

DOI: 10.7567/jjap.56.05dd02

Google Scholar

[15] P. A. Temple and C. E. Hathaway, Multiphonon Raman spectrum of silicon, Physical Review B 7 (1973) 3685–3697.

DOI: 10.1103/physrevb.7.3685

Google Scholar

[16] Z.Iqbal, S.Vepřek, A.P. Webb, P.Capezzuto, Raman scattering from small particle size polycrystalline silicon, Sol. St. Commun. 37 (1981) 993-996.

DOI: 10.1016/0038-1098(81)91202-3

Google Scholar

[17] S. Piscanec, A.C. Ferrari, M. Cantoro, S. Hofmann, J.A. Zapien, Y. Lifshitz, S.T. Lee, J. Robertson, Raman Spectrum of silicon nanowires, Materials Science and Engineering C. 23 (2003) 931–934.

DOI: 10.1016/j.msec.2003.09.084

Google Scholar