[1]
C. Y. Wang, The squeezing of a fluid between two plates, Journal of Applied Mechanics 43(4), (1976) 579-583.
Google Scholar
[2]
M. M. Rashidi, H. Shahmohamadi, S. Dinarvand, Analytic approximate solutions for unsteady two-dimensional and axisymmetric squeezing flows between parallel plates, Mathematical Problems in Engineering (2008) 1-13.
DOI: 10.1155/2008/935095
Google Scholar
[3]
M. Mustafa, T. Hayat, S. Obaidat, On Heat and Mass Transfer in the Unsteady Squeezing Flow Between Parallel Plates, Meccanica 47, (2012) 1581–1589.
DOI: 10.1007/s11012-012-9536-3
Google Scholar
[4]
P. Raissi, M. Shamlooei, S.M. Ebrahimzadeh Sepasgozar, M. Ayani, Numerical investigation of two-dimensional axisymmetric flow between parallel plates, Propulsion and Power Research 5(4), (2016) 318-325.
DOI: 10.1016/j.jppr.2016.11.006
Google Scholar
[5]
G. W. Sutton, A. Sherman Engineering Magnetohydrodynamics (McGrawhill, New York, (1965).
Google Scholar
[6]
G. Domairry, A. Aziz, Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method, Mathematical Problems in Engineering 2009, (2009) 1-19.
DOI: 10.1155/2009/603916
Google Scholar
[7]
A. M. Siddiqui, S. Irum, A. R. Ansari, Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method, Mathematical Modelling and Analysis 13(4), (2008) 565-576.
DOI: 10.3846/1392-6292.2008.13.565-576
Google Scholar
[8]
D. F. Moore, A review of squeeze films, Wear 8(4), (1965) 245-263.
Google Scholar
[9]
Tasawar Hayat, Rai Sajjad, Ahmed Alsaedi, Taseer Muhammad, Rahmat Ellahi, On squeezed flow of couple stress nanofluid between two parallel plates, Results in Physics 7, (2017) 553-561.
DOI: 10.1016/j.rinp.2016.12.038
Google Scholar
[10]
T. Hayat, M. Nawaz, Awatif A. Hendi, S. Asghar, MHD squeezing flow of a micropolar fluid between parallel disks, Journal of Fluids Engineering 133, (2011) 1-10.
DOI: 10.1115/1.4005197
Google Scholar
[11]
M. Sathish Kumar, N. Sandeep, B. Rushi Kumar, Unsteady MHD nonlinear radiative squeezing slip-flow of Casson fluid between parallel disks, Journal of Computational and Applied Research 7(1), (2017) 35-45.
Google Scholar
[12]
O. Pourmehran, M. Rahimi-Gorji, M. Gorji-Bandpy, D. D. Ganji, Analytical investigation of squeezing unsteady nanofluid flow between parallel plates by LSM and CM, Alexandria Engineering Journal 54, (2015) 17-26.
DOI: 10.1016/j.aej.2014.11.002
Google Scholar
[13]
M. G. Sobamowo, and A. T. Akinshilo, On the analysis of squeezing flow of nanofluid between two parallel plates under the influence of magnetic field, Alexandria Engineering Journal (In press) (2017).
DOI: 10.1016/j.aej.2017.07.001
Google Scholar
[14]
Nilankush Acharya, Kalidas Das, Prabir Kumar Kundu, The squeezing flow of Cu-water and Cu-kerosene nanofluids between two parallel plates, Alexandria Engineering Journal 55(2), (2016) 1177-1186.
DOI: 10.1016/j.aej.2016.03.039
Google Scholar
[15]
M. Awais, T. Hayat, A. Alsaedi, S. Asghar, Time-dependent three-dimensional boundary layer flow of a Maxwell fluid, Computers & Fluids 91, (2014) 21-27.
DOI: 10.1016/j.compfluid.2013.12.002
Google Scholar
[16]
K. Pravin Kashyap, N. Naresh Kumar, Squeezing flow of a chemically reacting upper convected Maxwell nanofluid with slip effects, Journal of Nanofluids (2018) (Accepted).
DOI: 10.1166/jon.2019.1605
Google Scholar
[17]
Mahantesh M. Nandeppanavar, B.C. Prasannakumara, J. M. Shilpa, Three-Dimensional Flow, Heat and Mass Transfer of MHD Non-Newtonian Nanofluid Due to Stretching Sheet, Journal of Nanofluids 7(4) (2018), 635-645.
DOI: 10.1166/jon.2018.1498
Google Scholar
[18]
B.J. Gireesha, M. Archana, B.C. Prasannakumara, R.S. Reddy Gorla, Oluwole Daniel Makinde, MHD three dimensional double diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface, International Journal of Numerical Methods for Heat & Fluid Flow 27 (12) (2017), 2858-2878, https://doi.org/10.1108/HFF-01-2017-0022.
DOI: 10.1108/hff-01-2017-0022
Google Scholar
[19]
J. G Oldroyd, On the formulation of rheological equations of state, In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 200, (1950) 523-541.
DOI: 10.1098/rspa.1950.0035
Google Scholar
[20]
B. J. Gireesha, K. Ganesh Kumar, G. K. Ramesh, B. C. Prasannakumara, Nonlinear convective heat and mass transfer of Oldroyd-B nanofluid over a stretching sheet in the presence of uniform heat source/sink, Results in Physics 9 (2018), 1555-1563.
DOI: 10.1016/j.rinp.2018.04.006
Google Scholar
[21]
B.C. Prasannakumara, B.J. Gireesha, M.R. Krishnamurthy, K. Ganesh Kumar, MHD flow and nonlinear radiative heat transfer of Sisko nanofluid over a nonlinear stretching sheet, Informatics in Medicine Unlocked 9 (2017), 123-132.
DOI: 10.1016/j.imu.2017.07.006
Google Scholar
[22]
T. Hayat, Arshia Yousaf, M. Mustafa, and S. Obaidat, MHD squeezing flow of second-grade fluid between two parallel disks, International Journal for Numerical Methods in Fluids 69(2), (2011) 399-410.
DOI: 10.1002/fld.2565
Google Scholar
[23]
Si Xinhui, Zheng Liancun, Zhang Xinxin, Si Xinyi, Li Min, Asymmetric viscoelastic flow through a porous channel with expanding or contracting walls: a model for transport of biological fluids through vessels, Computer methods in biomechanics and biomedical engineering, 17(6), (2014) 623-631.
DOI: 10.1080/10255842.2012.708341
Google Scholar
[24]
N. Ali, S. U. Khan, Z. Abbas, M. Sajid, Soret and Dufour effects on hydromagnetic flow of viscoelastic fluid over porous oscillatory stretching sheet with thermal radiation, Journal of the Brazilian society of mechanical sciences and engineering 38(8), (2016) 2533-2546.
DOI: 10.1007/s40430-016-0506-x
Google Scholar
[25]
P.V. Narayana, N. Tarakaramu, O.D. Makinde, B. Venkateswarlu, G. Sarojamma, MHD Stagnation Point Flow of Viscoelastic Nanofluid Past a Convectively Heated Stretching Surface, In Defect and Diffusion Forum 387, 2018 106-120.
DOI: 10.4028/www.scientific.net/ddf.387.106
Google Scholar
[26]
P. V. Satya Narayana, and D. Harish Babu, Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal radiation, Journal of the Taiwan Institute of Chemical Engineers 59, (2016) 18-25.
DOI: 10.1016/j.jtice.2015.07.014
Google Scholar
[27]
Manoj Kumar Nayak, A. K. Hakeem, Oluwole Daniel Makinde, Influence of Catteneo-Christov Heat Flux Model on Mixed Convection Flow of Third Grade Nanofluid over an Inclined Stretched Riga Plate, Defect and Diffusion Forum, 387 2018 121-134.
DOI: 10.4028/www.scientific.net/ddf.387.121
Google Scholar
[28]
Marcelo J. R. Souza, Emanuel N. Macêdo, E. de A. Carlos, Joao N. N. Quaresma, Hybrid solution for the flow and heat transfer of a second-grade viscoelastic fluid on a stretching sheet with injection or suction. Journal of the Brazilian Society of Mechanical Sciences and Engineering 39(7), (2017) 2889-2904.
DOI: 10.1007/s40430-017-0772-2
Google Scholar
[29]
K. P. Priyadarsan, S. Panda, Flow and heat transfer analysis of magnetohydrodynamic (MHD) second-grade fluid in a channel with a porous wall, Journal of the Brazilian Society of Mechanical Sciences and Engineering 39(6), (2017) 2145-2157.
DOI: 10.1007/s40430-017-0715-y
Google Scholar
[30]
A. Alsaedi, T. Hayat, T. Muhammad, and S. A. Shehzad, MHD three-dimensional flow of viscoelastic fluid over an exponentially stretching surface with variable thermal conductivity,, Computational Mathematics and Mathematical Physics 56(9), (2016) 1665-1678.
DOI: 10.1134/s0965542516090025
Google Scholar
[31]
A.M. Blokhin, E. A. Kruglova, B. V. Semisalov, Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders, Computational Mathematics and Mathematical Physics 57(7), (2017) 1181-1193.
DOI: 10.1134/s0965542517070053
Google Scholar
[32]
M.B. Ashraf, A. Alsaedi, T. Hayat, S. A. Shehzad, Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink, Computational Mathematics and Mathematical Physics 57(6), (2017) 1066-1079.
DOI: 10.1134/s0965542517060021
Google Scholar
[33]
R. Latha, B. Rushi Kumar, Oluwole Daniel Makinde, Effects of Heat Dissipation on the Peristaltic Flow of Jeffery and Newtonian Fluid through an Asymmetric Channel with Porous Medium, In Defect and Diffusion Forum 387, 2018 218-243.
DOI: 10.4028/www.scientific.net/ddf.387.218
Google Scholar
[34]
S. Middleman, J. Greener, M. Malone, Fundamentals of polymer processing, McGraw-Hill, NewYork, (1977).
Google Scholar
[35]
T. Hayat, M. Awais, Three‐dimensional flow of upper convected Maxwell (UCM) fluid, International Journal for Numerical Methods in Fluids 66(7), (2011) 875-884.
DOI: 10.1002/fld.2289
Google Scholar
[36]
Swathi Mukhopadhyay, Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink, Chinese Physics Letters 29(5): 054703 (2012) 1-4.
DOI: 10.1088/0256-307x/29/5/054703
Google Scholar
[37]
Alizadeh-Pahlavan, S. Kayvan, On the use of homotopy analysis method for solving unsteady MHD flow of Maxwellian fluids above impulsively stretching sheets, Communications in Nonlinear Science and Numerical Simulation 14(4), (2009) 1355-1365.
DOI: 10.1016/j.cnsns.2008.03.001
Google Scholar
[38]
K. Vajravelu, K. Prasad, A. Sujatha, MHD flow and mass transfer of chemically reactive upper convected Maxwell fluid past porous surface, Applied Mathematics and Mechanics 33(7), (2012) 899–910.
DOI: 10.1007/s10483-012-1593-8
Google Scholar
[39]
Oluwole Daniel Makinde, Rohit Sharma, MHD Reacting and Radiating 3-D Flow of Maxwell Fluid Past a Stretching Sheet with Heat Source/Sink and Soret Effects in a Porous Medium, Defect and Diffusion Forum, 387, 2018 145-156.
DOI: 10.4028/www.scientific.net/ddf.387.145
Google Scholar
[40]
T. Hayat, Z. Abbas, Channel flow of a Maxwell fluid with chemical reaction, Zeitschrift für Angewandte Mathematik und Physik 59(1), (2008) 124-144.
DOI: 10.1007/s00033-007-6067-1
Google Scholar
[41]
Odelu Ojjela, K. Pravin Kashyap, N. Naresh Kumar, Samir Kumar Das, Unsteady flow and heat transfer of UCM fluid in a porous channel with variable thermal conductivity and ion slip effects, Frontiers in Heat and Mass Transfer (FHMT) 7(1), (2016) 1-9.
DOI: 10.5098/hmt.7.32
Google Scholar
[42]
M. Abbasi, M. Khaki, A. Rahbari, D. D. Ganji, I. Rahimipetroudi, Analysis of MHD flow characteristics of a UCM viscoelastic flow in a permeable channel under slip conditions, Journal of the Brazilian Society of Mechanical Sciences and Engineering 38(3), (2016) 977-988.
DOI: 10.1007/s40430-015-0325-5
Google Scholar
[43]
Muhammad Ijaz Khan, Muhammad Waqas, Tasawar Hayat, Muhammad Imran Khan, Ahmed Alsaedi, Chemically reactive flow of upper-convected Maxwell fluid with Cattaneo–Christov heat flux model, Journal of the Brazilian Society of Mechanical Sciences and Engineering 39(11), (2017) 4571-4578.
DOI: 10.1007/s40430-017-0915-5
Google Scholar
[44]
S. Saleem, M. Awais, S. Nadeem, N. Sandeep, M. T. Mustafa, Theoretical analysis of upper-convected Maxwell fluid flow with Cattaneo–Christov heat flux model, Chinese Journal of Physics 55 (4), (2017) 1615-1625.
DOI: 10.1016/j.cjph.2017.04.005
Google Scholar
[45]
T. Hayat, R. Sajjad, Z. Abbas, M. Sajid, A. A. Hendi, Radiation effects on MHD flow of Maxwell fluid in a channel with porous medium, International Journal of Heat and Mass Transfer 54(4), (2011) 854-862.
DOI: 10.1016/j.ijheatmasstransfer.2010.09.069
Google Scholar
[46]
J. Choi, Z. Rusak, J. Tichy, Maxwell fluid suction flow in a channel, Journal of non-Newtonian fluid mechanics 85 (2), (1999) 165–187.
DOI: 10.1016/s0377-0257(98)00197-9
Google Scholar
[47]
O. A. B´eg, O. D. Makinde, Viscoelastic flow and species transfer in a Darcian high-permeability channel, Journal of Petroleum Science and Engineering 76 (3), (2011) 93–99.
DOI: 10.1016/j.petrol.2011.01.008
Google Scholar
[48]
Peder A. Tyvand, Heat dispersion effect on thermal convection in anisotropic porous media, Journal of Hydrology 34, (1977) 335-342.
DOI: 10.1016/0022-1694(77)90140-8
Google Scholar
[49]
Rubens Silva Telles, Osvair V. Trevisan, Dispersion in heat and mass transfer natural convection along vertical boundaries in porous media, International Journal of Heat and Mass Transfer 36(5), (1993) 1357-1365.
DOI: 10.1016/s0017-9310(05)80103-6
Google Scholar
[50]
D. Srinivasacharya, J. Pranitha, Ch. RamReddy, Magnetic and double dispersion effects on free convection in a non-Darcy porous medium saturated with power-law, International Journal for Computational Methods in Engineering Science and Mechanics 13, (2012) 210-218.
DOI: 10.1080/15502287.2012.660231
Google Scholar
[51]
P. V. S. N. Murthy, Effect of double dispersion on mixed convection heat and mass transfer in non-Darcy porous medium, Journal of Heat Transfer 122, (2000) 476-484.
DOI: 10.1115/1.1286995
Google Scholar
[52]
Jaan Kiusalaas, Numerical Methods in Engineering with MATLAB, Cambridge University Press, (2005).
Google Scholar