[1]
A.C. Eringen, Theory of Micropolar fluid, J. Math. Mech. 16 (1966) 1-18.
Google Scholar
[2]
T. Ariman, M.A. Turk and N.D. Sylvester, Micro continuum Fluid Mechanics – A Review, Int. J. Eng. Sci. 11(1973) 905-930.
Google Scholar
[3]
S.K. Lakshmana Rao, Stability of micropolar fluid motions, Int. J. Eng. Sci. 8 (1970)753-762.
Google Scholar
[4]
S. Sharidan, Mathematical Modelling of g-Jitter Induced Free Convection, Universiti Teknologi Malaysia: Ph. D Thesis, (2005).
Google Scholar
[5]
N. Kishan, S. Maripala, Thermophoresis and viscous dissipation effects on Darcy-Forchheimer MHD mixed convection in a fluid saturated porous media, Adv. Appl. Sci. Res. 3(1) (2012) 60-74.
DOI: 10.14445/22315381/ijett-v10p245
Google Scholar
[6]
C. Soret, Influence de la temperature sur la distribution des sels dans leurs solutions, C. R. Acad. Sci. Paris. 91(1880) 289–291.
Google Scholar
[7]
M. Turkyilmazoglu, Mixed convection flow of magnetohydrodynamic micropolar fluid due to a porous heated/cooled deformable plate: Exact solutions, Int. J. Heat and Mass Transfer. 106 (2017) 127-134.
DOI: 10.1016/j.ijheatmasstransfer.2016.10.056
Google Scholar
[8]
T. Thirupathi, MD. Shamshuddin, Buoyancy ratio and heat source effects on MHD flow over an inclined non-linearly stretching sheet, Frontiers in Heat and Mass Transfer. 10 (2018) 1-12.
DOI: 10.5098/hmt.10.5
Google Scholar
[9]
H. Kumar, Heat transfer over a stretching porous sheet subjected to power law heat flux in presence of heat source, Thermal Sci. 15 (2011) 187-194.
DOI: 10.2298/tsci100331074k
Google Scholar
[10]
E.M.A. Elbashbeshy, D.A. Aldawody, Heat transfer over an unsteady stretching surface with variable heat flux in the presence of a heat source or sink. Computer & Mathematics with Applications. 60(10) (2010) 2806-2811.
DOI: 10.1016/j.camwa.2010.09.035
Google Scholar
[11]
M. Waqas, M. Farooq, M.I. Khan, A. Alsaedi, T. Hayat, T. Yasmeen, Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int. J. Heat Mass Transfer. 102 (2016) 766-772.
DOI: 10.1016/j.ijheatmasstransfer.2016.05.142
Google Scholar
[12]
A. Shaheen, A. Muhammad, A. Kashif, MHD flow of heat transfer analysis of micropolar fluid through a porous medium between two stretchable disks using Quasi-Linearization method, Iranian J. Chem. Eng. 36(4) (2017) 1-15.
Google Scholar
[13]
M.A.A. Mahmoud, S.E. Waheed, MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation (absorption) and slip velocity. J. Egyptian Math Soc. 20 (2012) 20-27.
DOI: 10.1016/j.joems.2011.12.009
Google Scholar
[14]
D.H. Doh, M. Muthtamilselvan, Thermophoretic particle deposition on magnetohydrodynamic flow of micropolar fluid due to a rotating disk. Int. J. Mech. Sci. 130 (2017) 350-359.
DOI: 10.1016/j.ijmecsci.2017.06.029
Google Scholar
[15]
M. Ramzan, M. Farooq, T. Hayat, J.D. Chung, Radiative and Joule heating effect in the MHD flow of a micropolar fluid with partial slip and convective boundary condition, J. Molecular Liquids. 221 (2016) 394-400.
DOI: 10.1016/j.molliq.2016.05.091
Google Scholar
[16]
D. Pal, B. Talukdar, Perturbation technique for unsteady MHD mixed convection periodic flow, heat and mass transfer in micropolar fluid with chemical reaction in the presence of thermal radiation, Central European J. Phys. 10 (2012) 1150-1167.
DOI: 10.2478/s11534-012-0063-6
Google Scholar
[17]
D. Pal, S. Biswas, Perturbation analysis of magnetohydrodynamics oscillatory flow on convective-radiative heat and mass transfer of micropolar fluid in a porous medium with chemical reaction, Eng. Sci. Tech.: An Int. J. 19 (2016) 444-462.
DOI: 10.1016/j.jestch.2015.09.003
Google Scholar
[18]
P.K. Rout, S.N. Sahoo, G.C. Dash, S.R. Mishra, Chemical reaction effect on MHD free convection flow in a micropolar fluid, Alexandria Eng. J. (2016). https://doi.org/10.1016/j.aej.2016.04.033.
DOI: 10.1016/j.aej.2016.04.033
Google Scholar
[19]
S. Siva Reddy, MD. Shamshuddin, Heat and mass transfer on the MHD flow of a micropolar fluid in the presence of viscous dissipation and chemical reaction, Procedia Eng. 127 (2015) 885-892.
DOI: 10.1016/j.proeng.2015.11.426
Google Scholar
[20]
K. Gangadhar, K.L. Narayana, P.S. Kumar, B.R. Kumar, MHD micropolar fluid flow over a stretching permeable sheet in the presence of thermal radiation and thermal slip flow: a numerical study, IOP conf. Series: Material Sci. Eng., 263, Article ID: 062010, 2017. https://doi/org/10.1088/1757-899X/263/6/062010.
DOI: 10.1088/1757-899x/263/6/062010
Google Scholar
[21]
K. Suneetha, S.M. Ibrahim, G.V. Ramana Reddy, Radiation and heat source effect on MHD flow over a permeable stretching sheet through porous stratum with chemical reaction, Multidiscipline Modelling in Materials and Structures. (2018). https://doi.org/10/1108/MMMS-122017-0159.
DOI: 10.1108/mmms-12-2017-0159
Google Scholar
[22]
K.P. Priyadarsan, S. Panda, Effect of variable fluid properties on MHD mixed convection flow of second-grade fluid over a linear Heated stretching sheet with a convective boundary condition, Proc. Natl. Acad. Sci., India-Section A Phys. Sci. (2018). https://doi.org/10.1007/s40010-018-0559-6.
DOI: 10.1007/s40010-018-0559-6
Google Scholar
[23]
E.O. Fatunmbi, A. Adeniyan, Heat and mass transfer in MHD micropolar fluid flow over a stretching sheet with velocity and thermal slip conditions, Open J. Fluid Dynamics. 8 (2018) 195-215.
DOI: 10.4236/ojfd.2018.82014
Google Scholar
[24]
D. Srinivasacharya, K. Himabindu, Effect of Slip and convective boundary conditions on entropy generation in a porous channel due to micropolar fluid flow, Int. J. Nonlinear Sci. Numer. Simult. 19(1) (2018) 11-24.
DOI: 10.1515/ijnsns-2016-0056
Google Scholar
[25]
S.R. Mishra, M.M. Hoque, B. Mohanty, N.N. Anika, Heat transfer effect on MHD flow of a micropolar fluid through porous medium with uniform heat source and radiation, Nonlinear Eng. (2018). https://doi.org/10.1515/nIeng-2017-0126.
DOI: 10.1515/nleng-2017-0126
Google Scholar
[26]
S.R. Mishra, I. Khan, Q.M. Al-mdallal, T. Asifa, Free convective micropolar fluid flow and heat transfer over a shrinking sheet with heat source, Case studies in Thermal Eng. 11 (2018) 113-119.
DOI: 10.1016/j.csite.2018.01.005
Google Scholar
[27]
MD. Shamshuddin, S.R. Mishra, O. Anwar Beg, A. Kadir, Unsteady reactive radiative micropolar flow, heat and mass transfer from an inclined plate with Joule heating: A model for electro-conductive polymer processing, Proc. IMechE Part C: J. Mech. Eng. Sci. (2018). https://doi.org/10.1177/094406218768837.
DOI: 10.1177/0954406218768837
Google Scholar
[28]
J.A. Shercliff, A text book of magnetohydrodynamics, Pergamon Press, New York, (1965).
Google Scholar
[29]
G.S. Guram, A.C. Smith, Stagnation point flows of micropolar fluids with strong and weak interactions, Computers and Mathematics with Applications. 6 (1980) 231-233.
DOI: 10.1016/0898-1221(80)90030-9
Google Scholar
[30]
G. Ahmadi, Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci. 14 (1976) 639-646.
DOI: 10.1016/0020-7225(76)90006-9
Google Scholar
[31]
J. Peddieson, An application of the micropolar fluid model to the calculation of turbulent shear flow, Int. J. Eng. Sci. 10 (1972) 23-32.
DOI: 10.1016/0020-7225(72)90072-9
Google Scholar
[32]
V.K. Stokes, Theories of Fluids with Microstructure, Springer, New York, (1984).
Google Scholar
[33]
B. Mohanty, S.R. Mishra, H.B. Pattnaik, Numerical investigation on heat and mass transfer effect of micropolar fluid over a stretching sheet, Alexandria Eng. J. 54(2) (2015) 223-232.
DOI: 10.1016/j.aej.2015.03.010
Google Scholar
[34]
T. Thirupathi, S.R. Mishra, Effect of Viscous Dissipation and Joule Heating on MHD Jeffery Nanofluid Flow with and Without Multi Slip Boundary Conditions, J. Nanofluids 7(3) (2018) 516–526.
DOI: 10.1166/jon.2018.1469
Google Scholar
[35]
MD. Shamshuddin, S.R. Mishra, O. Anwar Beg and A. Kadir, Lie Symmetry Analysis and numerical solutions for Thermo-solutal chemically reacting radiative micropolar flow from an inclined porous plate, Heat Transfer Asian Reaserch. 47(7) (2018) 918-940. https://doi.org/10.1002/htj.21358.
DOI: 10.1002/htj.21358
Google Scholar
[36]
M.J. Uddin O. Anwar Beg, M.N. Uddin, A.I.M. Ismail, Numerical solutions of thermo-solutal mixed convective slip flow from a radiative plate with convective boundary conditions, Journal of Hydrodynamics. 28(3) (2016) 451-461.
DOI: 10.1016/s1001-6058(16)60649-2
Google Scholar
[37]
T. Hayat, A. Shafiq, A. Alsaedi, S.A. Shahzad, Unsteady MHD flow over exponentially stretching sheet with slip conditions, Appl. Math. Mech. 37(2) (2016) 193-208.
DOI: 10.1007/s10483-016-2024-8
Google Scholar