MHD Mixed Convective Flow of Casson Nanofluid over a Slender Rotating Disk with Source/Sink and Partial Slip Effects

Article Preview

Abstract:

The prominence of present work is to investigate the axisymmetric mixed convective magnetohydrodynamic (MHD) flow of a Casson nanofluid over a stretching variable thickened rotating disk in the presence of heat source/sink and velocity slip surface boundary condition. Besides, thermal buoyancy and viscous dissipation effects are examined. Convective heat and zero nanoparticles mass flux conditions at the boundaries of the disk are implemented. Von Karman similarity transformation is employed to formulate highly nonlinear coupled ordinary differential equations and solved via Optimal Homotopy Analysis Method (OHAM). The computed numerical values are presented graphically to predict the features of the embedded parameters. A new method (slope of the linear regression) is used to analyze the computed data of Skin friction coefficient, Nusselt number and Sherwood number. It is found that the power law exponent parameter plays a dominant role within the velocity, thermal and concentration boundary layer regions. Further, the fluid flow is opposed due to the magnetic field and velocity slip results in a reduced velocity boundary layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-122

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows, 66(1995) 99-105.

Google Scholar

[2] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer, 128.3(2006) 240-250.

DOI: 10.1115/1.2150834

Google Scholar

[3] A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Therm. Sci. 49(2) (2010) 243-247.

DOI: 10.1016/j.ijthermalsci.2009.07.015

Google Scholar

[4] P. Rana, R. Bhargava, Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet, Commun Nonlinear Sci Numer Simul, 17 (2012) 212-216.

DOI: 10.1016/j.cnsns.2011.05.009

Google Scholar

[5] K.V. Prasad, K. Vajravelu, H. Vaidya, MHD Casson nanofluid flow and heat transfer at a stretching sheet with variable thickness, Journal of Nanofluids, 5.3(2016) 423-435.

DOI: 10.1166/jon.2016.1228

Google Scholar

[6] Wakif, Z. Boulahia, M. Zaydan, N. Yadil, R. Sehaqui, The power series method to solve a magneto-convection problem in a Darcy-Brinkman porous medium saturated by an electrically conducting nanofluid layer, Int. J Innovation Appl. Stud, 14.4 (2016) 1048-1065.

Google Scholar

[7] Wakif, Z. Boulahia, R. Sehaqui, Numerical Study of the Onset of Convection in a Newtonian Nanofluid Layer with Spatially Uniform and Non-Uniform Internal Heating, Journal of Nanofluids, 6.1 (2017) 136-148.

DOI: 10.1166/jon.2017.1293

Google Scholar

[8] Wakif, Z. Boulahia, R. Sehaqui, Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field, Results in Physics, 7(2017) 2134-2152.

DOI: 10.1016/j.rinp.2017.06.003

Google Scholar

[9] K.V. Prasad, K. Vajravelu, H. Vaidya, RA Van Gorder, MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness, Results in physics, 7 (2017) 1462-1474.

DOI: 10.1016/j.rinp.2017.03.022

Google Scholar

[10] K.Vajravelu, K.V. Prasad, CO Ng, H. Vaidya, MHD Squeeze flow and heat transfer of a nanofluid between two parallel disks with variable fluid properties and transpiration, Journal of Nanofluids, 7.3, (2017) 583-594.

DOI: 10.1186/s40712-017-0076-4

Google Scholar

[11] K.V. Prasad, Hanumesh Vaidya, K. Vajravelu, V. Ramanjini, Analytical study of Catteno – Christov heat flux model for Williamson Nonofluid flow over a slender elastic sheet with variable thickness, Journal of Nanofluid, 7.3 (2018) 583-594.

DOI: 10.1166/jon.2018.1475

Google Scholar

[12] M.K. Nayak, A.K. Abdul Hakeem, O.D. Makinde, Influence of Catteneo-Christov heat flux model on mixed convection flow of third-grade nanofluid over an inclined stretchedriga plate, Defect and Diffusion Forum, 387 (2018) 121-134.

DOI: 10.4028/www.scientific.net/ddf.387.121

Google Scholar

[13] P. Ram, V.K. Joshi, O.D. Makinde, Anil Kumar, Convective boundary layer flow of magnetic nanofluids under the influence of geothermal viscosity, Defect and Diffusion Forum, 387 (2018) 296-307.

DOI: 10.4028/www.scientific.net/ddf.387.296

Google Scholar

[14] H. Vaidya, K.V. Prasad, K. Vajravelu, U.B. Vishwanatha, G. Manjunatha, Neelufer Z Basha, Boungiorno model for MHD nanofluid flow between rotating parallel plates in the presence of variable liquid properties, Journal of nanofluids, 8.2 (2019) 399-406.

DOI: 10.1166/jon.2019.1594

Google Scholar

[15] T.V. Karman, Uber laminare and turbulenteReibung. Z. Angew,Math. Mech., 1 (1921) 233-252.

Google Scholar

[16] S.K. Kumar, W.I. Tacher, L.T. Watson, Magnetohydrodynamic flow between a solid rotating disk and a porous stationary disk, Appl. Math. Model 13(1989) 494-500.

DOI: 10.1016/0307-904x(89)90098-x

Google Scholar

[17] H.I. Andersson, E. de Korte, R. Meland, Flow of a power-law fluid over a rotating disk revisited, Fluid Dynamics Research, 28(2001) 75-88.

DOI: 10.1016/s0169-5983(00)00018-6

Google Scholar

[18] C.Y. Ming, L.C. Zheng and X.X. Zhang, Steady flow and heat transfer of the power-law fluid over a rotating disk, International Communications in Heat and Mass Transfer, 38 (2011) 280-284.

DOI: 10.1016/j.icheatmasstransfer.2010.11.013

Google Scholar

[19] M.M. Rashidi, N. Kavyani, S. Abelman, Investigation of entropy generation in MHD and slip flow over a rotating disk with variable properties, International Journal of Heat and Mass Transfer, 70 (2014) 892-917.

DOI: 10.1016/j.ijheatmasstransfer.2013.11.058

Google Scholar

[20] P.T. Griffiths,Flow of a generalized Newtonian fluid due to a rotating disk, Journal of Non-Newtonian Fluid Mechanics, 221 (2015) 9-17.

DOI: 10.1016/j.jnnfm.2015.03.008

Google Scholar

[21] S. Xun, J. Zhao, L. Zheng, X. Chen, X. Zhang, Flow and heat transfer of Ostwald-de Waele fluid over a variable thickness rotating disk with index decreasing, International Journal of Heat Mass Transfer 103 (2016) 1214-1224.

DOI: 10.1016/j.ijheatmasstransfer.2016.08.066

Google Scholar

[22] T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Radiative flow due to stretchable rotating disk with variable thickness, Results in Physics, 7 (2017) 156-165.

DOI: 10.1016/j.rinp.2016.12.010

Google Scholar

[23] Maria Imtiaz, Tasawar Hayat, Ahmed Alsaedi, SaleemAsghar, Slip flow by a variable thickness rotating disk subject to magnetohydrodynamics, Results in Physics, 7 (2017) 503-509.

DOI: 10.1016/j.rinp.2016.12.021

Google Scholar

[24] Mustafa Turkyilmazolu, Nanofluid flow and heat transfer due to a rotating disk, Computers and Fluids, 94 (2014) 139-146.

DOI: 10.1016/j.compfluid.2014.02.009

Google Scholar

[25] Chenguang Yin,Liancun Zhenga, Chaoli Zhang, Xinxin Zhang, Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction, Propulsion and Power Research, 6.1 (2017) 25-30.

DOI: 10.1016/j.jppr.2017.01.004

Google Scholar

[26] M. Mustafa, MHD nanofluid flow over a rotating disk with partial slip effects, International Journal of Heat and Mass Transfer, 108(2017) 1910-1916.

DOI: 10.1016/j.ijheatmasstransfer.2017.01.064

Google Scholar

[27] K. V. Prasad, K. Vajravelu, H. Vaidya, I. S. Shivakumara, Neelufer. Z. Basha, Flow and heat transfer of a Casson nanofluid over a nonlinear stretching sheet, J. Nanofluids 5 (2016) 743-752.

DOI: 10.1166/jon.2016.1255

Google Scholar

[28] N. Sandeep, O.K. Koriko, I.L. Animasaun, Modified kinematic viscosity model for 3D-Casson fluid flow within boundary layer formed on a surface at absolute zero. J.MolecularLquids, 221 (2016) 1197-1206.

DOI: 10.1016/j.molliq.2016.06.049

Google Scholar

[29] O.D. Makinde, V. Nagendramma, C.S.K. Raju, A. Leelarathnam, Effect of Cattaneo-Christov heat flux on Casson nanofluid flow past a stretching cylinder, Defect and Diffusion Forum, 378, (2017) 28-38.

DOI: 10.4028/www.scientific.net/ddf.378.28

Google Scholar

[30] K. V. Prasad, K. Vajravelu, Hanumesh Vaidya, M. M. Rashidi, Neelufer.Z.Basha, Flow and heat transfer of a Casson liquid over a vertical stretching surface optimal solution, American Journal of Heat and Mass Transfer, 5.1 (2018) 1-22.

DOI: 10.1166/jon.2016.1255

Google Scholar

[31] O.D. Makinde, N. Sandeep, T.M. Ajayi, I.L. Animasaum, Numerical Exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution, I.J. Non linear sciences and Numerical Simulation, 19.2 (2018) 93-106.

DOI: 10.1515/ijnsns-2016-0087

Google Scholar

[32] S. Liao, An optimal Homotopy-analysis approach for strongly nonlinear differential equations, Communications in Nonlinear Science & Numerical Simulation, 15(2010) 2003-2016.

DOI: 10.1016/j.cnsns.2009.09.002

Google Scholar

[33] R.A. Van Gorder, Optimal homotopy analysis and control of error for implicitly defined fully nonlinear differential equations, Numer Algor,https://doi.org/10.1007/s11075-018-0540-0 (2018).

DOI: 10.1007/s11075-018-0540-0

Google Scholar

[34] I.L. Animasaum, I. Pop, Numerical exploration of a non-Newtonian Carreau fluid flow driven by catalytic surface reactions on an upper horizontal surface of a paraboloid of revolution, buoyancy and stretching at the free stream, Alexandria Engineering Journal, 56.4 (2017) 647-658.

DOI: 10.1016/j.aej.2017.07.005

Google Scholar

[35] N.A Shah, I.L. Animasaun, R.O. Ibraheem, H.A. Babatunde, N. Sandeep, I. Pop, Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces, Journal of Molecular liquids, 249 (2018) 980-990.

DOI: 10.1016/j.molliq.2017.11.042

Google Scholar