[1]
S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows, 66(1995) 99-105.
Google Scholar
[2]
J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer, 128.3(2006) 240-250.
DOI: 10.1115/1.2150834
Google Scholar
[3]
A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Therm. Sci. 49(2) (2010) 243-247.
DOI: 10.1016/j.ijthermalsci.2009.07.015
Google Scholar
[4]
P. Rana, R. Bhargava, Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet, Commun Nonlinear Sci Numer Simul, 17 (2012) 212-216.
DOI: 10.1016/j.cnsns.2011.05.009
Google Scholar
[5]
K.V. Prasad, K. Vajravelu, H. Vaidya, MHD Casson nanofluid flow and heat transfer at a stretching sheet with variable thickness, Journal of Nanofluids, 5.3(2016) 423-435.
DOI: 10.1166/jon.2016.1228
Google Scholar
[6]
Wakif, Z. Boulahia, M. Zaydan, N. Yadil, R. Sehaqui, The power series method to solve a magneto-convection problem in a Darcy-Brinkman porous medium saturated by an electrically conducting nanofluid layer, Int. J Innovation Appl. Stud, 14.4 (2016) 1048-1065.
Google Scholar
[7]
Wakif, Z. Boulahia, R. Sehaqui, Numerical Study of the Onset of Convection in a Newtonian Nanofluid Layer with Spatially Uniform and Non-Uniform Internal Heating, Journal of Nanofluids, 6.1 (2017) 136-148.
DOI: 10.1166/jon.2017.1293
Google Scholar
[8]
Wakif, Z. Boulahia, R. Sehaqui, Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field, Results in Physics, 7(2017) 2134-2152.
DOI: 10.1016/j.rinp.2017.06.003
Google Scholar
[9]
K.V. Prasad, K. Vajravelu, H. Vaidya, RA Van Gorder, MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness, Results in physics, 7 (2017) 1462-1474.
DOI: 10.1016/j.rinp.2017.03.022
Google Scholar
[10]
K.Vajravelu, K.V. Prasad, CO Ng, H. Vaidya, MHD Squeeze flow and heat transfer of a nanofluid between two parallel disks with variable fluid properties and transpiration, Journal of Nanofluids, 7.3, (2017) 583-594.
DOI: 10.1186/s40712-017-0076-4
Google Scholar
[11]
K.V. Prasad, Hanumesh Vaidya, K. Vajravelu, V. Ramanjini, Analytical study of Catteno – Christov heat flux model for Williamson Nonofluid flow over a slender elastic sheet with variable thickness, Journal of Nanofluid, 7.3 (2018) 583-594.
DOI: 10.1166/jon.2018.1475
Google Scholar
[12]
M.K. Nayak, A.K. Abdul Hakeem, O.D. Makinde, Influence of Catteneo-Christov heat flux model on mixed convection flow of third-grade nanofluid over an inclined stretchedriga plate, Defect and Diffusion Forum, 387 (2018) 121-134.
DOI: 10.4028/www.scientific.net/ddf.387.121
Google Scholar
[13]
P. Ram, V.K. Joshi, O.D. Makinde, Anil Kumar, Convective boundary layer flow of magnetic nanofluids under the influence of geothermal viscosity, Defect and Diffusion Forum, 387 (2018) 296-307.
DOI: 10.4028/www.scientific.net/ddf.387.296
Google Scholar
[14]
H. Vaidya, K.V. Prasad, K. Vajravelu, U.B. Vishwanatha, G. Manjunatha, Neelufer Z Basha, Boungiorno model for MHD nanofluid flow between rotating parallel plates in the presence of variable liquid properties, Journal of nanofluids, 8.2 (2019) 399-406.
DOI: 10.1166/jon.2019.1594
Google Scholar
[15]
T.V. Karman, Uber laminare and turbulenteReibung. Z. Angew,Math. Mech., 1 (1921) 233-252.
Google Scholar
[16]
S.K. Kumar, W.I. Tacher, L.T. Watson, Magnetohydrodynamic flow between a solid rotating disk and a porous stationary disk, Appl. Math. Model 13(1989) 494-500.
DOI: 10.1016/0307-904x(89)90098-x
Google Scholar
[17]
H.I. Andersson, E. de Korte, R. Meland, Flow of a power-law fluid over a rotating disk revisited, Fluid Dynamics Research, 28(2001) 75-88.
DOI: 10.1016/s0169-5983(00)00018-6
Google Scholar
[18]
C.Y. Ming, L.C. Zheng and X.X. Zhang, Steady flow and heat transfer of the power-law fluid over a rotating disk, International Communications in Heat and Mass Transfer, 38 (2011) 280-284.
DOI: 10.1016/j.icheatmasstransfer.2010.11.013
Google Scholar
[19]
M.M. Rashidi, N. Kavyani, S. Abelman, Investigation of entropy generation in MHD and slip flow over a rotating disk with variable properties, International Journal of Heat and Mass Transfer, 70 (2014) 892-917.
DOI: 10.1016/j.ijheatmasstransfer.2013.11.058
Google Scholar
[20]
P.T. Griffiths,Flow of a generalized Newtonian fluid due to a rotating disk, Journal of Non-Newtonian Fluid Mechanics, 221 (2015) 9-17.
DOI: 10.1016/j.jnnfm.2015.03.008
Google Scholar
[21]
S. Xun, J. Zhao, L. Zheng, X. Chen, X. Zhang, Flow and heat transfer of Ostwald-de Waele fluid over a variable thickness rotating disk with index decreasing, International Journal of Heat Mass Transfer 103 (2016) 1214-1224.
DOI: 10.1016/j.ijheatmasstransfer.2016.08.066
Google Scholar
[22]
T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Radiative flow due to stretchable rotating disk with variable thickness, Results in Physics, 7 (2017) 156-165.
DOI: 10.1016/j.rinp.2016.12.010
Google Scholar
[23]
Maria Imtiaz, Tasawar Hayat, Ahmed Alsaedi, SaleemAsghar, Slip flow by a variable thickness rotating disk subject to magnetohydrodynamics, Results in Physics, 7 (2017) 503-509.
DOI: 10.1016/j.rinp.2016.12.021
Google Scholar
[24]
Mustafa Turkyilmazolu, Nanofluid flow and heat transfer due to a rotating disk, Computers and Fluids, 94 (2014) 139-146.
DOI: 10.1016/j.compfluid.2014.02.009
Google Scholar
[25]
Chenguang Yin,Liancun Zhenga, Chaoli Zhang, Xinxin Zhang, Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction, Propulsion and Power Research, 6.1 (2017) 25-30.
DOI: 10.1016/j.jppr.2017.01.004
Google Scholar
[26]
M. Mustafa, MHD nanofluid flow over a rotating disk with partial slip effects, International Journal of Heat and Mass Transfer, 108(2017) 1910-1916.
DOI: 10.1016/j.ijheatmasstransfer.2017.01.064
Google Scholar
[27]
K. V. Prasad, K. Vajravelu, H. Vaidya, I. S. Shivakumara, Neelufer. Z. Basha, Flow and heat transfer of a Casson nanofluid over a nonlinear stretching sheet, J. Nanofluids 5 (2016) 743-752.
DOI: 10.1166/jon.2016.1255
Google Scholar
[28]
N. Sandeep, O.K. Koriko, I.L. Animasaun, Modified kinematic viscosity model for 3D-Casson fluid flow within boundary layer formed on a surface at absolute zero. J.MolecularLquids, 221 (2016) 1197-1206.
DOI: 10.1016/j.molliq.2016.06.049
Google Scholar
[29]
O.D. Makinde, V. Nagendramma, C.S.K. Raju, A. Leelarathnam, Effect of Cattaneo-Christov heat flux on Casson nanofluid flow past a stretching cylinder, Defect and Diffusion Forum, 378, (2017) 28-38.
DOI: 10.4028/www.scientific.net/ddf.378.28
Google Scholar
[30]
K. V. Prasad, K. Vajravelu, Hanumesh Vaidya, M. M. Rashidi, Neelufer.Z.Basha, Flow and heat transfer of a Casson liquid over a vertical stretching surface optimal solution, American Journal of Heat and Mass Transfer, 5.1 (2018) 1-22.
DOI: 10.1166/jon.2016.1255
Google Scholar
[31]
O.D. Makinde, N. Sandeep, T.M. Ajayi, I.L. Animasaum, Numerical Exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution, I.J. Non linear sciences and Numerical Simulation, 19.2 (2018) 93-106.
DOI: 10.1515/ijnsns-2016-0087
Google Scholar
[32]
S. Liao, An optimal Homotopy-analysis approach for strongly nonlinear differential equations, Communications in Nonlinear Science & Numerical Simulation, 15(2010) 2003-2016.
DOI: 10.1016/j.cnsns.2009.09.002
Google Scholar
[33]
R.A. Van Gorder, Optimal homotopy analysis and control of error for implicitly defined fully nonlinear differential equations, Numer Algor,https://doi.org/10.1007/s11075-018-0540-0 (2018).
DOI: 10.1007/s11075-018-0540-0
Google Scholar
[34]
I.L. Animasaum, I. Pop, Numerical exploration of a non-Newtonian Carreau fluid flow driven by catalytic surface reactions on an upper horizontal surface of a paraboloid of revolution, buoyancy and stretching at the free stream, Alexandria Engineering Journal, 56.4 (2017) 647-658.
DOI: 10.1016/j.aej.2017.07.005
Google Scholar
[35]
N.A Shah, I.L. Animasaun, R.O. Ibraheem, H.A. Babatunde, N. Sandeep, I. Pop, Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces, Journal of Molecular liquids, 249 (2018) 980-990.
DOI: 10.1016/j.molliq.2017.11.042
Google Scholar