[1]
Salari, M., E.H. Malekshah, and M.H. Malekshah, Three-dimensional numerical analysis of the natural convection and entropy generation of MWCNTs-H2O and air as two immiscible fluids in a rectangular cuboid with fillet corners. Numerical Heat Transfer, Part A: Applications, 2017: pp.1-14.
DOI: 10.1080/10407782.2017.1309213
Google Scholar
[2]
K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer 46 (2003) 3639-3653.
DOI: 10.1016/s0017-9310(03)00156-x
Google Scholar
[3]
Sheikha M. Al-Weheibi , M.M. Rahman , M.S. Alam , K. Vajravelu , Numerical simulation of natural convection heat transfer in a trapezoidal enclosure filled with nanoparticles, International Journal of Mechanical Sciences (2017).
DOI: 10.1016/j.ijmecsci.2017.08.005
Google Scholar
[4]
M. M. Billah, M. M. Rahman, Uddin M. Sharif, M.N. Islam. Numerical simulation on buoyancy-driven heat transfer enhancement of nanofluids in an inclined triangular enclosure, Procedia Engineering 90 (2014) 517–523.
DOI: 10.1016/j.proeng.2014.11.766
Google Scholar
[5]
Abbas Kasaeipoor, Emad Hasani Malekshah, Lioua Kolsi. Free convection heat transfer and entropy generation analysis of MWCNT-MgO (15% -85%)/Water nanofluid using Lattice Boltzmann method in cavity with refrigerant solid body-Experimental thermo-physical properties, Powder Technology (2017).
DOI: 10.1016/j.powtec.2017.08.061
Google Scholar
[6]
Nadezhda S. Bondareva, Mikhail Sheremet, Hakan F. Öztop, Nidal Abu-Hamdeh, Natural convection in a partially open trapezoidal cavity filled with water-based nanofluid under the effects of Brownian diffusion and thermophoresi,, International Journal of Numerical Methods for Heat & Fluid Flow, doi.org/10.1108/HFF-04-2017-0170.
DOI: 10.1108/hff-04-2017-0170
Google Scholar
[7]
Esfandiary, M., Mehmandoust, B., Karimipour, A., Pakravan, H.A. Natural convection of Al2O3–water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon, International Journal of Thermal Sciences, vol. 105, (2016), p.137–158.
DOI: 10.1016/j.ijthermalsci.2016.02.006
Google Scholar
[8]
8.T. Tagawa and H. Ozoe, The Natural Convection of Liquid Metal in a Cubical Enclosure with Various Electro-Conductivities of the Wall under the Magnetic Field, Int. J. Heat Mass Transfer, vol. 41, (1998), p.1917–(1928).
DOI: 10.1016/s0017-9310(97)00313-x
Google Scholar
[9]
H. Ben Hadid and D. Henry, Numerical Study of Convection in the Horizontal Bridgman Configuration under the Action of a Constant Magnetic Field Part 2, Three Dimensional Flow, J. Fluid Mech., vol. 333, (1996), p.57–83.
DOI: 10.1017/s002211209600420x
Google Scholar
[10]
H. Ozoe and K. Okada, The Effect of the Direction of the External Magnetic Field on the Three-Dimensional Natural Convection in a Cubical Enclosure, Int. J. Heat Mass Transfer, vol. 32, (1989) p.1939–(1954).
DOI: 10.1016/0017-9310(89)90163-4
Google Scholar
[11]
R. Moßner and U. Muller, A Numerical Investigation of Three-Dimensional Magnetoconvection in Rectangular Cavities, Int. J. Heat Mass Transfer, vol. 42, (1999), p.1111–1121.
DOI: 10.1016/s0017-9310(98)00115-x
Google Scholar
[12]
S. Kenjere_s and K. Hanjalic´, Numerical Simulation of Magnetic Control of Heat Transfer in Thermal Convection, Int. J. Heat Fluid Flow, vol. 25, (2004), p.559–568.
DOI: 10.1016/j.ijheatfluidflow.2004.02.021
Google Scholar
[13]
A. Juel, T. Mullin, H. Ben Hadid, and D. Henry, Magneto hydrodynamic Convection in Molten Gallium, J. Fluid Mech., vol. 378, (1999), p.97–118.
DOI: 10.1017/s0022112098003061
Google Scholar
[14]
U. Burr, L. Barleon, P. Jochmann, and A. Tsinober, Magneto hydrodynamic Convection in Vertical Slot with Horizontal Magnetic Field, J. Fluid Mech., vol. 475, (2003), p.21–40.
DOI: 10.1017/s0022112002002811
Google Scholar
[15]
S. Alexandrova and S. Molkov, Three-Dimensional Buoyant Convection in a Rectangular Cavity with Differentially Heated Walls in a Strong Magnetic Field, Fluid Dynam. Res., vol. 35, (2004), p.37–66.
DOI: 10.1016/j.fluiddyn.2004.04.002
Google Scholar
[16]
B. Xu, B. Q. Li, and E. Stock, An Experimental Study of Thermally Induced Convection of Molten Galliumin Magnetic Fields, Int. J. Heat Mass Transfer, vol. 49, (2006), p.2009–(2019).
DOI: 10.1016/j.ijheatmasstransfer.2005.11.033
Google Scholar
[17]
H. Ozoe, and K. Okada, Experimental Heat Transfer Rates of Natural Convection of Molten Gallium Suppressed Under an External Magnetic Field in Either x, y or z Direction, Int. J. Heat Mass Transfer, vol. 114, (1992), p.107–114.
DOI: 10.1115/1.2911234
Google Scholar
[18]
Marina S. Astanina , Mikhail A. Sheremet , Hakan F. Oztop , Nidal Abu-Hamdeh , MHD natural convection and entropy generation of ferroßuid in an open trapezoidal cavity partially Þlled with a porous medium, International Journal of Mechanical Sciences (2018).
DOI: 10.1016/j.ijmecsci.2018.01.001
Google Scholar
[19]
M.B. Ben Hamida and K. Charrada, Natural Convection Heat Transfer in an Enclosure Filled with an Ethylene Glycol—Copper Nanofluid Under Magnetic Fields, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 67:8 (2015),pp.902-920.
DOI: 10.1080/10407782.2014.949209
Google Scholar
[20]
Malvandi, A., Ganji, D.D. Brownian motion and thermophoresis effects on slip flow alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field, International Journal of Thermal Sciences, vol. 84, (2014), p.196–206.
DOI: 10.1016/j.ijthermalsci.2014.05.013
Google Scholar
[21]
Sankar M, Venkatachalappa M, and Shivakumara IS. Effect of magnetic field on natural convection in a vertical cylindrical annulus. Int. J. Eng. Science, 44, (2006), pp.1556-1570.
DOI: 10.1016/j.ijengsci.2006.06.004
Google Scholar
[22]
Grosan T, Revnic C, Pop I, and Ingham DB. Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium. Int. J. Heat Mass Transfer, 52(5-6), (2009), pp.1525-1533.
DOI: 10.1016/j.ijheatmasstransfer.2008.08.011
Google Scholar
[23]
Seong, J. K. and Choung M. L., Control of flows around a circular cylinder: Suppression of oscillatory lift force, Fluid Dynamics Research, 29, (2001), pp.47-63.
DOI: 10.1016/s0169-5983(01)00019-3
Google Scholar
[24]
Chandran, P., Sacheti, N. C. and Singh, A. K., Hydromagnetic flow and heat transfer past a continuously moving porous boundary, International Communications in Heat and Mass transfer, 23, (1996), pp.889-898.
DOI: 10.1016/0735-1933(96)00071-1
Google Scholar
[25]
Chandran, P., Sacheti, N. C. and Singh, A. K., Unsteady hydromagnetic free convection flow with heat flux and accelerated boundary motion, Journal of Physical society of Japan, 67, (1998), pp.124-129.
DOI: 10.1143/jpsj.67.124
Google Scholar
[26]
Chandran, P., Sacheti, N. C. and Singh, A. K., A unified approach to analytical solution of a hydromagnetic free convection flow, Scientiae Mathematicae Japonicae, 53, (2001), pp.467-476.
Google Scholar
[27]
Mina Shahi, Amir Houshang Mahmoudi, Farhad Talebi, A numerical investigation of conjugated-natural convection heat transfer enhancement of a nanofluid in an annular tube driven by inner heat generating solid cylinder, International communication in Heat and Mass transfer 38, (2011), pp.533-542.
DOI: 10.1016/j.icheatmasstransfer.2010.12.022
Google Scholar
[28]
M. Esmaeilpour, M. Abdollahzadeh, Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls, International Journal of Thermal Science 52, (2012), pp.127-136.
DOI: 10.1016/j.ijthermalsci.2011.08.019
Google Scholar
[29]
T.S. Kumar, B.R. Kumar, O.D. Makinde, A.G.V. Kumar, Magneto-Convective Heat Transfer in Micropolar Nanofluid over a Stretching Sheet with Non-Uniform Heat Source/Sink. Defect and Diffusion Forum, 387 (2018), pp.78-90.
DOI: 10.4028/www.scientific.net/ddf.387.78
Google Scholar
[30]
Paras Ram, Vimal Kumar Joshi, O.D. Makinde, Anil Kumar, Convective Boundary Layer Flow of Magnetic Nanofluids under the Influence of Geothermal Viscosity. Defect and Diffusion Forum, 387 (2018), pp.296-307.
DOI: 10.4028/www.scientific.net/ddf.387.296
Google Scholar
[31]
K.U. Rehman, M.Y. Malik, O.D. Makinde, A.A. Malik: A comparative study of nanofluids flow yields by an inclined cylindrical surface in a double stratified medium. The European Physical Journal Plus, Vol.132, 427 (1-21) (2017).
DOI: 10.1140/epjp/i2017-11679-1
Google Scholar
[32]
M. Sankar, S. Kiran, G.K. Ramesh: Natural Convection in a Non-Uniformly Heated Vertical Annular Cavity. Defect and Diffusion Forum, Vol. 377, pp.189-199, (2017).
DOI: 10.4028/www.scientific.net/ddf.377.189
Google Scholar
[33]
Y. Xuan and W. Roetzel, Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transfer, vol. 43, no. 19, (2000), p.3701–3707.
DOI: 10.1016/s0017-9310(99)00369-5
Google Scholar
[34]
H. C. Brinkman, The viscosity of concentrated suspensions and solution, J. Chem. Phys., vol. 20, (1952), p.571–581.
Google Scholar
[35]
Yu.W, Choi.SUS, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of Nano-particle Reseach, 5, (2003), pp.167-171.
DOI: 10.1023/a:1024438603801
Google Scholar
[36]
Patankar, S. Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, (1980).
Google Scholar
[37]
M. Sheikholeslami, Numerical simulation of magnetic nanofluid natural convection in porous media, Phys. Lett. A (2017), Doi.org/10.1016/j.physleta.2016.11.042.
Google Scholar