Numerical Study of Natural Convection in Vertical Cylindrical Annular Enclosure Filled with Cu-Water Nanofluid under Magnetic Fields

Article Preview

Abstract:

The two dimensional study of natural convection in vertical cylindrical annular enclosure filled with Cu-water nanofluid under magnetic fields is numerically analyzed. The vertical walls are maintained at different uniform hot and cold temperatures, TH and TC, respectively. The top and bottom walls of the enclosure are thermally insulated. The governing equations are solved numerically by using a finite volume method. The coupling between the continuity and momentum equations is effected using the SIMPLER algorithm. Numerical analysis has been carried out for a wide range of Rayleigh number (103 ≤Ra≤106), Hartmann number (1 ≤Ha≤100) and nanoparticles volume fraction (0 ≤φ≤0.08). The influence of theses physical parameters on the streamlines, isotherms and average Nusselt has been numerically investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-137

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Salari, M., E.H. Malekshah, and M.H. Malekshah, Three-dimensional numerical analysis of the natural convection and entropy generation of MWCNTs-H2O and air as two immiscible fluids in a rectangular cuboid with fillet corners. Numerical Heat Transfer, Part A: Applications, 2017: pp.1-14.

DOI: 10.1080/10407782.2017.1309213

Google Scholar

[2] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer 46 (2003) 3639-3653.

DOI: 10.1016/s0017-9310(03)00156-x

Google Scholar

[3] Sheikha M. Al-Weheibi , M.M. Rahman , M.S. Alam , K. Vajravelu , Numerical simulation of natural convection heat transfer in a trapezoidal enclosure filled with nanoparticles, International Journal of Mechanical Sciences (2017).

DOI: 10.1016/j.ijmecsci.2017.08.005

Google Scholar

[4] M. M. Billah, M. M. Rahman, Uddin M. Sharif, M.N. Islam. Numerical simulation on buoyancy-driven heat transfer enhancement of nanofluids in an inclined triangular enclosure, Procedia Engineering 90 (2014) 517–523.

DOI: 10.1016/j.proeng.2014.11.766

Google Scholar

[5] Abbas Kasaeipoor, Emad Hasani Malekshah, Lioua Kolsi. Free convection heat transfer and entropy generation analysis of MWCNT-MgO (15% -85%)/Water nanofluid using Lattice Boltzmann method in cavity with refrigerant solid body-Experimental thermo-physical properties, Powder Technology (2017).

DOI: 10.1016/j.powtec.2017.08.061

Google Scholar

[6] Nadezhda S. Bondareva, Mikhail Sheremet, Hakan F. Öztop, Nidal Abu-Hamdeh, Natural convection in a partially open trapezoidal cavity filled with water-based nanofluid under the effects of Brownian diffusion and thermophoresi,, International Journal of Numerical Methods for Heat & Fluid Flow, doi.org/10.1108/HFF-04-2017-0170.

DOI: 10.1108/hff-04-2017-0170

Google Scholar

[7] Esfandiary, M., Mehmandoust, B., Karimipour, A., Pakravan, H.A. Natural convection of Al2O3–water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon, International Journal of Thermal Sciences, vol. 105, (2016), p.137–158.

DOI: 10.1016/j.ijthermalsci.2016.02.006

Google Scholar

[8] 8.T. Tagawa and H. Ozoe, The Natural Convection of Liquid Metal in a Cubical Enclosure with Various Electro-Conductivities of the Wall under the Magnetic Field, Int. J. Heat Mass Transfer, vol. 41, (1998), p.1917–(1928).

DOI: 10.1016/s0017-9310(97)00313-x

Google Scholar

[9] H. Ben Hadid and D. Henry, Numerical Study of Convection in the Horizontal Bridgman Configuration under the Action of a Constant Magnetic Field Part 2, Three Dimensional Flow, J. Fluid Mech., vol. 333, (1996), p.57–83.

DOI: 10.1017/s002211209600420x

Google Scholar

[10] H. Ozoe and K. Okada, The Effect of the Direction of the External Magnetic Field on the Three-Dimensional Natural Convection in a Cubical Enclosure, Int. J. Heat Mass Transfer, vol. 32, (1989) p.1939–(1954).

DOI: 10.1016/0017-9310(89)90163-4

Google Scholar

[11] R. Moßner and U. Muller, A Numerical Investigation of Three-Dimensional Magnetoconvection in Rectangular Cavities, Int. J. Heat Mass Transfer, vol. 42, (1999), p.1111–1121.

DOI: 10.1016/s0017-9310(98)00115-x

Google Scholar

[12] S. Kenjere_s and K. Hanjalic´, Numerical Simulation of Magnetic Control of Heat Transfer in Thermal Convection, Int. J. Heat Fluid Flow, vol. 25, (2004), p.559–568.

DOI: 10.1016/j.ijheatfluidflow.2004.02.021

Google Scholar

[13] A. Juel, T. Mullin, H. Ben Hadid, and D. Henry, Magneto hydrodynamic Convection in Molten Gallium, J. Fluid Mech., vol. 378, (1999), p.97–118.

DOI: 10.1017/s0022112098003061

Google Scholar

[14] U. Burr, L. Barleon, P. Jochmann, and A. Tsinober, Magneto hydrodynamic Convection in Vertical Slot with Horizontal Magnetic Field, J. Fluid Mech., vol. 475, (2003), p.21–40.

DOI: 10.1017/s0022112002002811

Google Scholar

[15] S. Alexandrova and S. Molkov, Three-Dimensional Buoyant Convection in a Rectangular Cavity with Differentially Heated Walls in a Strong Magnetic Field, Fluid Dynam. Res., vol. 35, (2004), p.37–66.

DOI: 10.1016/j.fluiddyn.2004.04.002

Google Scholar

[16] B. Xu, B. Q. Li, and E. Stock, An Experimental Study of Thermally Induced Convection of Molten Galliumin Magnetic Fields, Int. J. Heat Mass Transfer, vol. 49, (2006), p.2009–(2019).

DOI: 10.1016/j.ijheatmasstransfer.2005.11.033

Google Scholar

[17] H. Ozoe, and K. Okada, Experimental Heat Transfer Rates of Natural Convection of Molten Gallium Suppressed Under an External Magnetic Field in Either x, y or z Direction, Int. J. Heat Mass Transfer, vol. 114, (1992), p.107–114.

DOI: 10.1115/1.2911234

Google Scholar

[18] Marina S. Astanina , Mikhail A. Sheremet , Hakan F. Oztop , Nidal Abu-Hamdeh , MHD natural convection and entropy generation of ferroßuid in an open trapezoidal cavity partially Þlled with a porous medium, International Journal of Mechanical Sciences (2018).

DOI: 10.1016/j.ijmecsci.2018.01.001

Google Scholar

[19] M.B. Ben Hamida and K. Charrada, Natural Convection Heat Transfer in an Enclosure Filled with an Ethylene Glycol—Copper Nanofluid Under Magnetic Fields, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 67:8 (2015),pp.902-920.

DOI: 10.1080/10407782.2014.949209

Google Scholar

[20] Malvandi, A., Ganji, D.D. Brownian motion and thermophoresis effects on slip flow alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field, International Journal of Thermal Sciences, vol. 84, (2014), p.196–206.

DOI: 10.1016/j.ijthermalsci.2014.05.013

Google Scholar

[21] Sankar M, Venkatachalappa M, and Shivakumara IS. Effect of magnetic field on natural convection in a vertical cylindrical annulus. Int. J. Eng. Science, 44, (2006), pp.1556-1570.

DOI: 10.1016/j.ijengsci.2006.06.004

Google Scholar

[22] Grosan T, Revnic C, Pop I, and Ingham DB. Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium. Int. J. Heat Mass Transfer, 52(5-6), (2009), pp.1525-1533.

DOI: 10.1016/j.ijheatmasstransfer.2008.08.011

Google Scholar

[23] Seong, J. K. and Choung M. L., Control of flows around a circular cylinder: Suppression of oscillatory lift force, Fluid Dynamics Research, 29, (2001), pp.47-63.

DOI: 10.1016/s0169-5983(01)00019-3

Google Scholar

[24] Chandran, P., Sacheti, N. C. and Singh, A. K., Hydromagnetic flow and heat transfer past a continuously moving porous boundary, International Communications in Heat and Mass transfer, 23, (1996), pp.889-898.

DOI: 10.1016/0735-1933(96)00071-1

Google Scholar

[25] Chandran, P., Sacheti, N. C. and Singh, A. K., Unsteady hydromagnetic free convection flow with heat flux and accelerated boundary motion, Journal of Physical society of Japan, 67, (1998), pp.124-129.

DOI: 10.1143/jpsj.67.124

Google Scholar

[26] Chandran, P., Sacheti, N. C. and Singh, A. K., A unified approach to analytical solution of a hydromagnetic free convection flow, Scientiae Mathematicae Japonicae, 53, (2001), pp.467-476.

Google Scholar

[27] Mina Shahi, Amir Houshang Mahmoudi, Farhad Talebi, A numerical investigation of conjugated-natural convection heat transfer enhancement of a nanofluid in an annular tube driven by inner heat generating solid cylinder, International communication in Heat and Mass transfer 38, (2011), pp.533-542.

DOI: 10.1016/j.icheatmasstransfer.2010.12.022

Google Scholar

[28] M. Esmaeilpour, M. Abdollahzadeh, Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls, International Journal of Thermal Science 52, (2012), pp.127-136.

DOI: 10.1016/j.ijthermalsci.2011.08.019

Google Scholar

[29] T.S. Kumar, B.R. Kumar, O.D. Makinde, A.G.V. Kumar, Magneto-Convective Heat Transfer in Micropolar Nanofluid over a Stretching Sheet with Non-Uniform Heat Source/Sink. Defect and Diffusion Forum, 387 (2018), pp.78-90.

DOI: 10.4028/www.scientific.net/ddf.387.78

Google Scholar

[30] Paras Ram, Vimal Kumar Joshi, O.D. Makinde, Anil Kumar, Convective Boundary Layer Flow of Magnetic Nanofluids under the Influence of Geothermal Viscosity. Defect and Diffusion Forum, 387 (2018), pp.296-307.

DOI: 10.4028/www.scientific.net/ddf.387.296

Google Scholar

[31] K.U. Rehman, M.Y. Malik, O.D. Makinde, A.A. Malik: A comparative study of nanofluids flow yields by an inclined cylindrical surface in a double stratified medium. The European Physical Journal Plus, Vol.132, 427 (1-21) (2017).

DOI: 10.1140/epjp/i2017-11679-1

Google Scholar

[32] M. Sankar, S. Kiran, G.K. Ramesh: Natural Convection in a Non-Uniformly Heated Vertical Annular Cavity. Defect and Diffusion Forum, Vol. 377, pp.189-199, (2017).

DOI: 10.4028/www.scientific.net/ddf.377.189

Google Scholar

[33] Y. Xuan and W. Roetzel, Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transfer, vol. 43, no. 19, (2000), p.3701–3707.

DOI: 10.1016/s0017-9310(99)00369-5

Google Scholar

[34] H. C. Brinkman, The viscosity of concentrated suspensions and solution, J. Chem. Phys., vol. 20, (1952), p.571–581.

Google Scholar

[35] Yu.W, Choi.SUS, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of Nano-particle Reseach, 5, (2003), pp.167-171.

DOI: 10.1023/a:1024438603801

Google Scholar

[36] Patankar, S. Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, (1980).

Google Scholar

[37] M. Sheikholeslami, Numerical simulation of magnetic nanofluid natural convection in porous media, Phys. Lett. A (2017), Doi.org/10.1016/j.physleta.2016.11.042.

Google Scholar