[1]
A. Chakrabarti, A. S. Gupta, Hydromagnetic flow and heat transfer over a stretching sheet, Quar terly Journal of Applied Mathematics. 37 (1979) 7378.
DOI: 10.1090/qam/99636
Google Scholar
[2]
B. C. Sakiadis, Boundary layer behavior on continuous solid surface: Boundary layer equations for twodimensional and axisymmetric flow, American Institute of Chemical Engineers journal. 7 (1) (1961) 2628.
DOI: 10.1002/aic.690070108
Google Scholar
[3]
F. K. Tsou, E. M. Sparrow, R. J. Goldstein, Flow and heat transfer in the boundary layer on a continuous moving surface, International Journal of Heat and Mass Transfer. 10 (1967) 219235.
DOI: 10.1016/0017-9310(67)90100-7
Google Scholar
[4]
A. J. Chamkha, Hydromagnetic three dimensional free convection on a vertical stretching surface with heat generation or absorption, International Journal of Heat and Fluid Flow. 20 (1999) 8492.
DOI: 10.1016/s0142-727x(98)10032-2
Google Scholar
[5]
C. Bozkaya, M. TezerSezgin, Fundamental solution for coupled Magnetohydrodynamic flow equations, The Journal of Computational and Applied Mathematics. 203 (2007) 125144.
DOI: 10.1016/j.cam.2006.03.013
Google Scholar
[6]
M. TezerSezgin, S. Han Aydin, Solution of Magnetohydrodynamic flow problems using the boundary element method, Engineering Analysis with Boundary Elements. 30 (2006) (5) 411 418.
DOI: 10.1016/j.enganabound.2005.12.001
Google Scholar
[7]
A.B. Iskakov, S. Descombes, E. Dormy, An integrodifferential formulation for magnetic induc tion in bounded domains: boundary element finite volume method. Journal of Computational Physics 197 (2004) 540554.[8] I. Celik, Solution of Magnetohydrodynamic flow in a rectangular duct by Chebyshev Polynomial Method, Applied Mathematics. 2 (3) (2012) 5865.
DOI: 10.1016/j.jcp.2003.12.008
Google Scholar
[9]
C. Muhim, P. N. Deka, Numerical solution for coupled MHD flow equations in a square duct in the presence of strong inclined magnetic field, International Journal of Advanced Research in Physical Science. 2 (9) (2015) 2029.
Google Scholar
[10]
K. S. Adegbie, F. I. Alao, Flow of Temperaturedependent viscous fluid between parallel heated walls: Exact analytical solutions in the presence of viscous dissipation, Journal of Mathematics and Statistics. 3 (1) (2007) 1214.
DOI: 10.3844/jmssp.2007.12.14
Google Scholar
[11]
M. S. Ahmed, Variable viscosity and thermal conductivity effects on MHD flow and heat transfer in viscoelastic fluid over a stretching sheet, Physics Letter A. 369 (2007) 31522.
DOI: 10.1016/j.physleta.2007.04.104
Google Scholar
[12]
O. K. Koriko, O. A. Oyem, Variable thermal conductivity on compressible boundary layer flow over a circular cylinder, Journal of the Nigerian Association of Mathematical Physics. 18 (2011) 209218.
Google Scholar
[13]
G. C. Hazarika, U. S. GopalCh, Effects of variable viscosity and thermal conductivity on MHD flow past a vertical plate, Matematicas: Ensenanza Universitaria. 14 (2) (2012) 4554.
Google Scholar
[14]
M. Xenos, Radiation effects on flow past a stretching plate with temperature dependent viscosity, Applied Mathematics. 4 (2013) 15.
DOI: 10.4236/am.2013.49a001
Google Scholar
[15]
S. Manjunatha, B. J. Gireesha, Effect of variable viscosity and thermal conductivity on MHD flow and heat transfer of a dusty fluid, Ain Shams Engineering Journal. 7 (2016) 505515.
DOI: 10.1016/j.asej.2015.01.006
Google Scholar
[16]
R. Tsai, K. H. Huang, J. S. Huang, Effects of variable viscosity and thermal conductivity on heat transfer for hydromagnetic flow over a continuous moving porous plate with ohmic heating, Applied Thermal Engineering. 29 (2009) 1921(1926).
DOI: 10.1016/j.applthermaleng.2008.09.005
Google Scholar
[17]
A. M. Okedoye, R. E. Asibor, Effect of variable viscosity on MHD flow near a stagnation point in the presence of heat generation/absorption, Journal of the Nigerian Association of Mathematical Physics. 27 (2014) 171178.
Google Scholar
[18]
A. C. Yunus, Heat Transfer: A Practical Approach, New York, McGrawHill, (2002).
Google Scholar
[19]
A. C. Cogley, W. G. Vincenti, S. E. Giles, Differential approximation for near equilibrium flow of a nongray gas, American Institute of Aeronautics and Astronautics. 6 (1968) 551553.
Google Scholar
[20]
M. A. Hossain, H. S. Takhar, Radiation effect on mixed convection along a vertical plate with uniform surface temperature, Heat Mass Transfer. 31 (4) (1996) 243248.
DOI: 10.1007/bf02328616
Google Scholar
[21]
K. S. Adegbie, A. I. Fagbade, Analysis of MHD forced convective flow of variable fluid proper ties over a saturated porous medium with thermal radiation effect, International Frontier Science Letters. 9 (2016) 4765.
DOI: 10.18052/www.scipress.com/ifsl.9.47
Google Scholar
[22]
A. S. Idowu, K. M. Joseph, C. Onwubuoya, W. D. Joseph, Viscous dissipation and buoyancy effects on laminar convection in a vertical channel with transpiration, International Journal of Applied Mathematical Research. 2 (4) (2013) 455463.
DOI: 10.14419/ijamr.v2i4.1148
Google Scholar
[23]
S. Kalpna, G. Sumit, Homotopy analysis solution to thermal radiation effects on MHD bound ary layer flow and heat transfer towards an inclined plate with convective boundary conditions, International Journal of Applied and Computational Mathematics. 3 (3) (2016) 25332552.[24] V. Ananthaswamy, N. Yogeswari, S. Usha, Mathematical analysis of MHD flow of an optically thin viscous fluid through a channel, International Journal of Statistics and Applied Mathematics. 1 (2) (2016) 1323.
DOI: 10.1007/s40819-016-0249-5
Google Scholar
[25]
S. O. Salawu, M. S. Dada, Radiative heat transfer of variable viscosity and thermal conductiv ity effects on inclined magnetic field with dissipation in a nonDarcy medium, Journal of the Nigerian Mathematical Society. 35 (2016) 93106.
DOI: 10.1016/j.jnnms.2015.12.001
Google Scholar
[26]
I. S. Mohammed, Dissipation and variable viscosity on steady MHD free convective flow over a stretching sheet in presence of thermal radiation and chemical reaction, Advances in Applied Science Research. 5 (2) (2014) 246261.
Google Scholar
[27]
S. J. Liao, A kind of approximate solution technique which does not depend upon small param eters (II): An Application in Fluid Mechanics, International Journal of NonLinear Mechanics. 32 (5) (1997) 815822.
DOI: 10.1016/s0020-7462(96)00101-1
Google Scholar
[28]
S. J. Liao, A simple approach of enlarging convergence regions of perturbation approximations, Nonlinear Dynamics. 19 (1999) 93110.
Google Scholar
[29]
S. J. Liao, The proposed homotopy analysis technique for the Solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, (1992).
Google Scholar
[30]
S. J. Liao, Beyond perturbation: Introduction to homotopy analysis method, Chapman and Hall, CRC Press, Boca Raton (2003).
Google Scholar
[31]
S. J. Liao, On the homotopy analysis method for nonlinear problems, Applied Mathematics and Computation. 147 (2) (2004) 499513.
Google Scholar
[32]
S. J. Liao, An optimal Homotopyanalysis approach for strongly nonlinear differential equations, Communications in Nonlinear Science and Numerical Simulation. 15 (2010) 2003(2016).
DOI: 10.1016/j.cnsns.2009.09.002
Google Scholar
[33]
S. J. Liao, The Homotopy analysis method in nonlinear differential equations, Springer and Higher education press, (2012).
Google Scholar
[34]
S. Abbasbandy, The application of homotopy analysis method to solve a generalized Hirota Satsuma coupled KdV equation, Physics Letters A. 361 (2007) 478483.
DOI: 10.1016/j.physleta.2006.09.105
Google Scholar
[35]
O. D. Makinde, I. L. Animasahun, Thermophoresis and Brownian motion effects on MHD bio convection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, Journal of Molecular Liquids. 221 (2016) 733743.
DOI: 10.1016/j.molliq.2016.06.047
Google Scholar