Effects of Heat Transfer on Peristaltic Transport of a Bingham Fluid through an Inclined Tube with Different Wave Forms

Article Preview

Abstract:

The present study investigates the effects of slip and heat transfer on peristaltic mechanism of Bingham fluid in an inclined tube. The sinusoidal, multi-sinusoidal, triangular, square and trapezoidal wave forms are considered. The analysis has been carried out under the assumptions of long wavelength and small Reynold's number approximations. The closed-form solutions are obtained for velocity, plug flow velocity, pressure gradient, streamlines, and temperature. The numerical integration is employed to investigate the effects of pressure rise and frictional force. The influence of relevant parameters on physiological quantities of interest is analyzed and discussed through graphs. The study reveals that velocity and thermal slip have a decreasing effect on velocity and temperature. Further, it is noticed that the volume of trapped bolus increases for increasing values of velocity slip parameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-177

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Jaggy, M. Lachat, B. Leskosek, G. Znd, M. Turina, Affinity pump system: a new peristaltic blood pump for cardiopulmonary bypass, Perfusion, 15 (2000) 77–83.

DOI: 10.1177/026765910001500111

Google Scholar

[2] W. Latham, Fluid motions in the peristaltic pump, PhD thesis, Massachusetts Institute of Technology, Boston, USA, (1966).

Google Scholar

[3] A. H. Shapiro, M. Y. Jaffrin, S. L. Weinberg, Peristaltic pumping with long wavelengths at low Reynolds number, Journal of Fluid Mechanics, 37 (1969) 799–825.

DOI: 10.1017/s0022112069000899

Google Scholar

[4] K. K. Raju, R. Devanathan, Peristaltic motion of a non-Newtonian fluid, Rheologica Acta, 11 (1972) 170–178.

DOI: 10.1007/bf01993016

Google Scholar

[5] P. Hariharan, V. Seshadri, R. K. Banerjee, Peristaltic transport of non-Newtonian fluid in a diverging tube with different wave forms, Mathematical and Computer Modelling, 48 (2008) 998-1017.

DOI: 10.1016/j.mcm.2007.10.018

Google Scholar

[6] C. Rajashekhar, G. Manjunatha, K. V. Prasad, B. B. Divya, V. Hanumesh, Peristaltic transport of two-layered blood flow using Herschel-Bulkley fluid, Cogent Engineering, 5 (2018) 1495592.

DOI: 10.1080/23311916.2018.1495592

Google Scholar

[7] E. Comparini, P. Mannucc, Flow of a Bingham fluid in contact with a Newtonian fluid, Journal of Mathematical Analysis and Applications, 227 (1998) 359–381.

DOI: 10.1006/jmaa.1998.6098

Google Scholar

[8] L. Fusi, A. Farina, Peristaltic axisymmetric flow of a Bingham fluid, Applied Mathematics and Computation, 320 (2018) 1–15.

DOI: 10.1016/j.amc.2017.09.017

Google Scholar

[9] G. Manjunatha, C. Rajashekhar, H. Vaidya, K. V. Prasad, Peristaltic mechanism of Bingham liquid in a convectively heated porous tube in the presence of variable liquid properties, Speial Topics and Reviews in Porous Media, (2019).

DOI: 10.1615/specialtopicsrevporousmedia.2019026973

Google Scholar

[10] W. C. Kwang-Hua, J. Fang, Peristaltic transport in a slip flow, The European Physical Journal B, 16 (2000) 543–547.

Google Scholar

[11] E. F. El-Shehawey, N. T. El-Dabe, I. M. El-Desoky, Slip effects on the peristaltic flow of a non-Newtonian Maxwellian fluid, Acta Mechanica, 186 (2006) 141–159.

DOI: 10.1007/s00707-006-0343-6

Google Scholar

[12] A. El-Hakeem, A. El-Naby, I. I. E. El-Shamy, Slip effects on peristaltic transport of power-law fluid through an inclined tube, Applied Mathematical Sciences, 1 (2007) 2967–2980.

Google Scholar

[13] G. Manjunatha, C. Rajashekhar, Slip effects on peristaltic transport of Casson fluid in an inclined elastic tube with porous walls, Journal of Advanced Fluid Mechanics and Thermal Sciences, 43 (2018) 67–80.

DOI: 10.2478/ijame-2019-0020

Google Scholar

[14] C. Rajashekhar, G. Manjunatha, Hanumesh Vaidya, K. V. Prasad, Peristaltic flow of Herschel-Bulkley fluid in an elastic tube with slip at porous walls, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 52 (2018) 63-75.

DOI: 10.37934/arfmts.102.2.166185

Google Scholar

[15] R. Latha, B. R. Kumar, O. D. Makinde, Peristaltic flow of Couple stress fluid in an asymmetric channel with partial slip, Defect and Diffusion Forum, 387 (2018) 385-402.

DOI: 10.4028/www.scientific.net/ddf.387.385

Google Scholar

[16] S. Srinivas, R. Gayathri, M. Kothandapani, The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport, Computer Physics Communications, 180 (2009) 2115–2122.

DOI: 10.1016/j.cpc.2009.06.015

Google Scholar

[17] T. Hayat, S. Hina, N. Ali, Simultaneous effects of slip and heat transfer on the peristaltic flow, Communications in Nonlinear Science and Numerical Simulation, 15 (2010) 1526–1537.

DOI: 10.1016/j.cnsns.2009.06.032

Google Scholar

[18] D. Kalidas, Effects of slip and heat transfer on MHD peristaltic flow in an inclined asymmetric channel, Iranian Journal of Mathematical Sciences and Informatics, 7 (2012) 35–52.

Google Scholar

[19] T. Hayat, S. Hina, A. Awatif, A. Hendi, Slip effects on peristaltic transport of a Maxwell fluid with heat and mass transfer, Journal of Mechanics in Medicine and Biology, 12 (2012) 1250001(22 pages).

DOI: 10.1142/s0219519412004375

Google Scholar

[20] V. Sugunamma, J. V. R. Reddy, CSK Raju, M. J. Babu, N. Sandeep, Effects of radiation and magnetic field on the flow and heat transfer of a nanofluid in a rotating frame, Industrial Engineering Letters, 4 (2014) 8-20.

Google Scholar

[21] J. V. R. Reddy, V. Sugunamma, N. Sandeep, Enhanced heat transfer in the flow of dissipative non-Newtonian Casson fluid flow over a convectively heated upper surface of a paraboloid of revolution, Journal of Molecular Liquids, 229 (2017) 380-388.

DOI: 10.1016/j.molliq.2016.12.100

Google Scholar

[22] J. Reza, Oudina F-Mebarek, O. D. Makinde, MHD slip flow of Cu-Kerosene nanofluid in a channel with stretching walls using 3-stage lobatto IIIA formula, Defect and Diffusion Forum, 387 (2018) 51-62.

DOI: 10.4028/www.scientific.net/ddf.387.51

Google Scholar

[23] Oudina F-Mebarek, O. D. Makinde, Numerical simulation of Oscillatory MHD natural convection in cylindrical annulus: Prandtl number effect, Defect and Diffusion Forum, 387 (2018) 417-427.

DOI: 10.4028/www.scientific.net/ddf.387.417

Google Scholar

[24] A. Wakif, Z. Boulahia, S. R. Mishra, M. M. Rashidi, R. Sehaqui, Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno's mathematical model, The European Physical Journal Plus, 133 (2018) 181.

DOI: 10.1140/epjp/i2018-12037-7

Google Scholar

[25] R. Latha, B. R. Kumar, O. D. Makinde, Effects of heat dissipation on the peristaltic flow of Jeffery and Newtonian fluid through an asymmetric channel with porous medium, Defect and Diffusive Forum, 387 (2018) 218-243.

DOI: 10.4028/www.scientific.net/ddf.387.218

Google Scholar

[26] H. Vaidya, G. Manjunatha, C. Rajashekhar, K. V. Prasad, Role of slip and heat transfer on peristaltic transport of Herschel-Bulkley Fluid through an elastic tube, Multidiscipline Modelling in Materials and Structures, (2018).

DOI: 10.1108/mmms-11-2017-0144

Google Scholar

[27] C. Rajashekhar, G. Manjunatha, H. Vaidya, B. B. Divya, K. V. Prasad, Peristaltic flow of Casson liquid in an inclined porous tube with convective boundary conditions and variable liquid properties, Frontiers in Heat and Mass Transfer 11 (2018) 35.

DOI: 10.5098/hmt.11.35

Google Scholar

[28] K. A. Kumar, J. V. R. Reddy, V. Sugunamma, N. Sandeep, Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with non-uniform heat source/sink, Heat Transfer Research, (2019).

DOI: 10.1615/heattransres.2018025939

Google Scholar

[29] B. Ramadevi, J. V. R. Reddy, V. Sugunamma, Influence of thermo-diffusion on time depended Casson fluid flow past a wavy surface, International Journal of Mathematical, Engineering and Management Sciences, (2019).

DOI: 10.33889/ijmems.2018.3.4-034

Google Scholar

[30] H. Vaidya, C. Rajashekhar, G. Manjunatha, K. V. Prasad, Rheological properties and peristalsis of Rabinowitsch fluid through complaint porous walls in an inclined channel, Journal of Nanofluids, 8 (2019) 970-979.

DOI: 10.1166/jon.2019.1664

Google Scholar

[31] H. Vaidya, C. Rajashekhar, G. Manjunatha, K. V. Prasad, Peristaltic mechanism of a Rabinowitsch fluid in an inclined channel with complaint wall and variable liquid properties, Journal of the Brazilian Society of Mechanical Science and Engineering, 41 (2019) 52.

DOI: 10.1007/s40430-018-1543-4

Google Scholar

[32] R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, Wiley, New York, (1976).

Google Scholar

[33] G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, Journal of Fluid Mechanics, 30 (1967) 197-207.

DOI: 10.1017/s0022112067001375

Google Scholar