[1]
C. Jaggy, M. Lachat, B. Leskosek, G. Znd, M. Turina, Affinity pump system: a new peristaltic blood pump for cardiopulmonary bypass, Perfusion, 15 (2000) 77–83.
DOI: 10.1177/026765910001500111
Google Scholar
[2]
W. Latham, Fluid motions in the peristaltic pump, PhD thesis, Massachusetts Institute of Technology, Boston, USA, (1966).
Google Scholar
[3]
A. H. Shapiro, M. Y. Jaffrin, S. L. Weinberg, Peristaltic pumping with long wavelengths at low Reynolds number, Journal of Fluid Mechanics, 37 (1969) 799–825.
DOI: 10.1017/s0022112069000899
Google Scholar
[4]
K. K. Raju, R. Devanathan, Peristaltic motion of a non-Newtonian fluid, Rheologica Acta, 11 (1972) 170–178.
DOI: 10.1007/bf01993016
Google Scholar
[5]
P. Hariharan, V. Seshadri, R. K. Banerjee, Peristaltic transport of non-Newtonian fluid in a diverging tube with different wave forms, Mathematical and Computer Modelling, 48 (2008) 998-1017.
DOI: 10.1016/j.mcm.2007.10.018
Google Scholar
[6]
C. Rajashekhar, G. Manjunatha, K. V. Prasad, B. B. Divya, V. Hanumesh, Peristaltic transport of two-layered blood flow using Herschel-Bulkley fluid, Cogent Engineering, 5 (2018) 1495592.
DOI: 10.1080/23311916.2018.1495592
Google Scholar
[7]
E. Comparini, P. Mannucc, Flow of a Bingham fluid in contact with a Newtonian fluid, Journal of Mathematical Analysis and Applications, 227 (1998) 359–381.
DOI: 10.1006/jmaa.1998.6098
Google Scholar
[8]
L. Fusi, A. Farina, Peristaltic axisymmetric flow of a Bingham fluid, Applied Mathematics and Computation, 320 (2018) 1–15.
DOI: 10.1016/j.amc.2017.09.017
Google Scholar
[9]
G. Manjunatha, C. Rajashekhar, H. Vaidya, K. V. Prasad, Peristaltic mechanism of Bingham liquid in a convectively heated porous tube in the presence of variable liquid properties, Speial Topics and Reviews in Porous Media, (2019).
DOI: 10.1615/specialtopicsrevporousmedia.2019026973
Google Scholar
[10]
W. C. Kwang-Hua, J. Fang, Peristaltic transport in a slip flow, The European Physical Journal B, 16 (2000) 543–547.
Google Scholar
[11]
E. F. El-Shehawey, N. T. El-Dabe, I. M. El-Desoky, Slip effects on the peristaltic flow of a non-Newtonian Maxwellian fluid, Acta Mechanica, 186 (2006) 141–159.
DOI: 10.1007/s00707-006-0343-6
Google Scholar
[12]
A. El-Hakeem, A. El-Naby, I. I. E. El-Shamy, Slip effects on peristaltic transport of power-law fluid through an inclined tube, Applied Mathematical Sciences, 1 (2007) 2967–2980.
Google Scholar
[13]
G. Manjunatha, C. Rajashekhar, Slip effects on peristaltic transport of Casson fluid in an inclined elastic tube with porous walls, Journal of Advanced Fluid Mechanics and Thermal Sciences, 43 (2018) 67–80.
DOI: 10.2478/ijame-2019-0020
Google Scholar
[14]
C. Rajashekhar, G. Manjunatha, Hanumesh Vaidya, K. V. Prasad, Peristaltic flow of Herschel-Bulkley fluid in an elastic tube with slip at porous walls, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 52 (2018) 63-75.
DOI: 10.37934/arfmts.102.2.166185
Google Scholar
[15]
R. Latha, B. R. Kumar, O. D. Makinde, Peristaltic flow of Couple stress fluid in an asymmetric channel with partial slip, Defect and Diffusion Forum, 387 (2018) 385-402.
DOI: 10.4028/www.scientific.net/ddf.387.385
Google Scholar
[16]
S. Srinivas, R. Gayathri, M. Kothandapani, The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport, Computer Physics Communications, 180 (2009) 2115–2122.
DOI: 10.1016/j.cpc.2009.06.015
Google Scholar
[17]
T. Hayat, S. Hina, N. Ali, Simultaneous effects of slip and heat transfer on the peristaltic flow, Communications in Nonlinear Science and Numerical Simulation, 15 (2010) 1526–1537.
DOI: 10.1016/j.cnsns.2009.06.032
Google Scholar
[18]
D. Kalidas, Effects of slip and heat transfer on MHD peristaltic flow in an inclined asymmetric channel, Iranian Journal of Mathematical Sciences and Informatics, 7 (2012) 35–52.
Google Scholar
[19]
T. Hayat, S. Hina, A. Awatif, A. Hendi, Slip effects on peristaltic transport of a Maxwell fluid with heat and mass transfer, Journal of Mechanics in Medicine and Biology, 12 (2012) 1250001(22 pages).
DOI: 10.1142/s0219519412004375
Google Scholar
[20]
V. Sugunamma, J. V. R. Reddy, CSK Raju, M. J. Babu, N. Sandeep, Effects of radiation and magnetic field on the flow and heat transfer of a nanofluid in a rotating frame, Industrial Engineering Letters, 4 (2014) 8-20.
Google Scholar
[21]
J. V. R. Reddy, V. Sugunamma, N. Sandeep, Enhanced heat transfer in the flow of dissipative non-Newtonian Casson fluid flow over a convectively heated upper surface of a paraboloid of revolution, Journal of Molecular Liquids, 229 (2017) 380-388.
DOI: 10.1016/j.molliq.2016.12.100
Google Scholar
[22]
J. Reza, Oudina F-Mebarek, O. D. Makinde, MHD slip flow of Cu-Kerosene nanofluid in a channel with stretching walls using 3-stage lobatto IIIA formula, Defect and Diffusion Forum, 387 (2018) 51-62.
DOI: 10.4028/www.scientific.net/ddf.387.51
Google Scholar
[23]
Oudina F-Mebarek, O. D. Makinde, Numerical simulation of Oscillatory MHD natural convection in cylindrical annulus: Prandtl number effect, Defect and Diffusion Forum, 387 (2018) 417-427.
DOI: 10.4028/www.scientific.net/ddf.387.417
Google Scholar
[24]
A. Wakif, Z. Boulahia, S. R. Mishra, M. M. Rashidi, R. Sehaqui, Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno's mathematical model, The European Physical Journal Plus, 133 (2018) 181.
DOI: 10.1140/epjp/i2018-12037-7
Google Scholar
[25]
R. Latha, B. R. Kumar, O. D. Makinde, Effects of heat dissipation on the peristaltic flow of Jeffery and Newtonian fluid through an asymmetric channel with porous medium, Defect and Diffusive Forum, 387 (2018) 218-243.
DOI: 10.4028/www.scientific.net/ddf.387.218
Google Scholar
[26]
H. Vaidya, G. Manjunatha, C. Rajashekhar, K. V. Prasad, Role of slip and heat transfer on peristaltic transport of Herschel-Bulkley Fluid through an elastic tube, Multidiscipline Modelling in Materials and Structures, (2018).
DOI: 10.1108/mmms-11-2017-0144
Google Scholar
[27]
C. Rajashekhar, G. Manjunatha, H. Vaidya, B. B. Divya, K. V. Prasad, Peristaltic flow of Casson liquid in an inclined porous tube with convective boundary conditions and variable liquid properties, Frontiers in Heat and Mass Transfer 11 (2018) 35.
DOI: 10.5098/hmt.11.35
Google Scholar
[28]
K. A. Kumar, J. V. R. Reddy, V. Sugunamma, N. Sandeep, Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with non-uniform heat source/sink, Heat Transfer Research, (2019).
DOI: 10.1615/heattransres.2018025939
Google Scholar
[29]
B. Ramadevi, J. V. R. Reddy, V. Sugunamma, Influence of thermo-diffusion on time depended Casson fluid flow past a wavy surface, International Journal of Mathematical, Engineering and Management Sciences, (2019).
DOI: 10.33889/ijmems.2018.3.4-034
Google Scholar
[30]
H. Vaidya, C. Rajashekhar, G. Manjunatha, K. V. Prasad, Rheological properties and peristalsis of Rabinowitsch fluid through complaint porous walls in an inclined channel, Journal of Nanofluids, 8 (2019) 970-979.
DOI: 10.1166/jon.2019.1664
Google Scholar
[31]
H. Vaidya, C. Rajashekhar, G. Manjunatha, K. V. Prasad, Peristaltic mechanism of a Rabinowitsch fluid in an inclined channel with complaint wall and variable liquid properties, Journal of the Brazilian Society of Mechanical Science and Engineering, 41 (2019) 52.
DOI: 10.1007/s40430-018-1543-4
Google Scholar
[32]
R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, Wiley, New York, (1976).
Google Scholar
[33]
G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, Journal of Fluid Mechanics, 30 (1967) 197-207.
DOI: 10.1017/s0022112067001375
Google Scholar