[1]
Sebbar Y.Y, A.C. Budiman, H. Mitsudharmadi and all. Development of Pre-Set Counter-Rotating Streamwise Vortices in Wavy Channel. Experimental Thermal and Fluid Science.71. (2016).77–85.
DOI: 10.1016/j.expthermflusci.2015.10.016
Google Scholar
[2]
Rush and all. An experimental study of flow and heat transfer in sinusoidal wavy passages. Int. j. Heat Mass Transfer. 42. (1999). 1541-1553.
DOI: 10.1016/s0017-9310(98)00264-6
Google Scholar
[3]
Metwally H.M. and Manglik R.M. Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plat channel. Int. J. Heat Mass Transfer. 47. (2004). 2283-2292.
DOI: 10.1016/j.ijheatmasstransfer.2003.11.019
Google Scholar
[4]
N.A.C. Sidik, M.N.A.W. Muhamad, W.M.A.A. Japar, Z.A. Rasid. An overview of passive techniques for heat transfer augmentation in microchannel heat sink. Int. Commun. Heat Mass Transf. 88. (2017). 74–83.
DOI: 10.1016/j.icheatmasstransfer.2017.08.009
Google Scholar
[5]
I.A. Ghani, N.A.C. Sidik, N. Kamaruzaman, Hydrothermal performance of microchannel heat sink: the effect of channel design, Int. J. Heat Mass Transf.107. (2017). 21–44.
DOI: 10.1016/j.ijheatmasstransfer.2016.11.031
Google Scholar
[6]
I.A. Ghani, N. Kamaruzaman, N.A.C. Sidik, Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs, Int. J. Heat Mass Transfer, Part B 108. 1969–(1981).
DOI: 10.1016/j.ijheatmasstransfer.2017.01.046
Google Scholar
[7]
A.G. Ramgadia, A.K. Saha. Characteristics of fully developed flow and heat transfer in channels with varying wall geometry, ASME J. Heat Transfer. 136. (2014).
DOI: 10.1115/1.4024552
Google Scholar
[8]
M. Akbarzadeh, S. Rashidi, M. Bovand, R. Ellahi. A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel, J. Mol. Liq. 220. (2016). 1–13.
DOI: 10.1016/j.molliq.2016.04.058
Google Scholar
[9]
Pop, A. Ishak.Convective heat transfer of micropolar fluid in a horizontal wavy channel under the local heating, Int. J. Mech. Sci.128. (2017). 541–549.
DOI: 10.1016/j.ijmecsci.2017.05.013
Google Scholar
[10]
L. Lin, J. Zhao, G. Lu, X.D. Wang, W.M. Yan.Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/ amplitude, Int. J. Therm. Sci.118. (2017). 423–434.
DOI: 10.1016/j.ijthermalsci.2017.05.013
Google Scholar
[11]
Y. Islamoglu, C. Parmaksizoglu. The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel, Appl Therm Eng 23. (2003). 979–987.
DOI: 10.1016/s1359-4311(03)00029-2
Google Scholar
[12]
Y.T. Yang, H.W. Tang, S.J. Jian. Numerical simulation and optimization of turbulent nanofluids in a three-dimensional wavy channel, Numer. Heat Transfer Part A 69. 10. (2016). 1169–1185.
DOI: 10.1080/10407782.2015.1125729
Google Scholar
[13]
J. Buckles, T.J. Hanratty, R.J. Adrian. Turbulent flow over large-amplitude wavy surfaces, J. Fluid Mech. 140. (1984) .27–44.
DOI: 10.1017/s0022112084000495
Google Scholar
[14]
J.D. Kuzan, T.J. Hanratty, R.J. Adrian. Turbulent flows with incipient separation over solid waves, Exp. Fluid. 2. (1989).88–98.
DOI: 10.1007/bf00207300
Google Scholar
[15]
H. Ren, Y. Liu. Experimental investigation of fluid flow and heat transfer characteristics of a longitudinal corrugated liner for a combustion chamber, Appl. Therm. Eng.108. (2016). 1066–1075.
DOI: 10.1016/j.applthermaleng.2016.08.015
Google Scholar
[16]
N. Singh, R. Sivan, M. Sotoa, M. Faizal, M.R. Ahmed. Experimental studies on parallel wavy channel heat exchangers with varying channel inclination angles, Exp. Therm. Fluid Sci. 75 (2016). 173–182.
DOI: 10.1016/j.expthermflusci.2016.02.009
Google Scholar
[17]
H. Ali, Y. Hanaoka. Experimental study on laminar flow forced-convection in a channel with upper v-corrugated plate heated by radiation, International Journal of Heat and Mass Transfer 45. (2002). 2107–2117.
DOI: 10.1016/s0017-9310(01)00309-x
Google Scholar
[18]
S.D. Pandey, V.K. Nema. An experimental investigation of exergy loss reduction in corrugated plate heat exchanger. Energy.36. (2011 .2997–3001.
DOI: 10.1016/j.energy.2011.02.043
Google Scholar
[19]
Miles, J.W. On the generation of surface waves by shear flows. J. Fluid Mech.3. (1957).185.
Google Scholar
[20]
Benjamin, T.B. Shearing flow over a wavy boundary J. Fluid Mech.6. (1959). 161.
DOI: 10.1017/s0022112059000568
Google Scholar
[21]
Thorsness, C.B., Morrisroe, P.E., and Hanratty, T.J. A comparison of linear theory with measurements of the variation of shear stress along a solid wave. Chem. Engrg. Sci.33. (1978). 579.
DOI: 10.1016/0009-2509(78)80020-7
Google Scholar
[22]
J. Zhou, M. Hatami, D. Song, D. Jing. Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods, Int. J. Heat Mass Transf.103. (2016). 715–724.
DOI: 10.1016/j.ijheatmasstransfer.2016.07.100
Google Scholar
[23]
M. Khoshvaght-Aliabadi. Influence of different design parameters and Al2O3- water nano-fluid flow on heat transfer and flow characteristics of sinusoidal corrugated channels. Energy Convers. Manage. 88. (2014). 96–105.
DOI: 10.1016/j.enconman.2014.08.042
Google Scholar
[24]
V. Patel, J. Chon, J. Yoon. Turbulent-flow in a channel with a wavy wall, ASME J. Fluids Eng. 113. (1991). 579–586.
DOI: 10.1115/1.2926518
Google Scholar
[25]
A.Z. Dellil and all. Turbulent flow and convective heat transfer in a wavy wall channel. International Journal of Heat and Mass transfer. 40. (2004). 793-799.
DOI: 10.1007/s00231-003-0474-4
Google Scholar
[26]
R.Deepakkumar , S. Jayavel. Effect of local waviness in confining walls and its amplitude on vortex shedding control of the flow past a circular cylinder, Ocean Engineering, 156. (2018). 208–216.
DOI: 10.1016/j.oceaneng.2018.03.018
Google Scholar
[27]
M. Sparrow and A.T. Pratta. Numerical solution for laminar flow and heat transfer in a periodically converging –diverging tube, with experimental confirmation transfer. Numerical Heat Transfer. 6. (1983). 441-461.
DOI: 10.1080/01495728308963099
Google Scholar
[28]
J.D. Hudson and al. Turbulent production in flow over wavy wall. Experiments in Fluids.50. (1996). 257-265.
Google Scholar
[29]
P. Cherukat, Y. Na, T.J. Hanratty, J.B. McGlaughlin. Direct numerical simulation of a fully developed turbulent flow over a wavy wall, Theor. Comput. Fluid Dyn. 11. (1998). 109–134.
DOI: 10.1007/s001620050083
Google Scholar