[1]
G.E. Tsyplenkin, Review of CIMAC-1998 papers on supercharging and turbochargers, Dvigatelestroyeniye. (1998) 42–45.
Google Scholar
[2]
N.I. Nikolaev, O.P. Ghinda, A.N. Zhuk, Efficiency of Mid-Speed Marine Engine vs. its Turbocharger's Nozzle Block Cross-Section Area, Dvigatelestroyeniye. (2009) 45–47.
Google Scholar
[3]
D. Tinsley, Racking up engine performance, Shipp. World Shipbuild. Propuls. Turbochargers. (2007) 10–15.
Google Scholar
[4]
G.E. Tsyplenkin, V.I. Iovlev, Turbocharging System Optimization as a Means to Improve Engine Fuel Efficiency. P.1, Dvigatelestroyeniye. (2014) 16–22.
Google Scholar
[5]
G.E. Tsyplenkin, V.I. Iovlev, Turbocharging System Optimization as a Means to Improve Engine Fuel Efficiency. P.2, Dvigatelestroyeniye. (2014) 19–28.
Google Scholar
[6]
L. Chen, J. Luo, F. Sun, C. Wu, Design efficiency optimization of one-dimensional multi-stage axial-flow compressor, Appl. Energy. 85 (2008) 625–633.
DOI: 10.1016/j.apenergy.2007.10.003
Google Scholar
[7]
N.N. Bayomi, R.M. Abd El-Maksoud, Two operating modes for turbocharger system, Energy Convers. Manag. 58 (2012) 59–65.
DOI: 10.1016/j.enconman.2012.01.003
Google Scholar
[8]
N. Binder, J. Garcia Benitez, X. Carbonneau, Dynamic Response in Transient Operation of a Variable Geometry Turbine Stage: Influence of the Aerodynamic Performance, Int. J. Rotating Mach. 2013 (2013) 1–11.
DOI: 10.1155/2013/735321
Google Scholar
[9]
S. Ghasemi, E. Shirani, A. Hajilouy-Benisi, Performance Prediction of Twin-Entry Turbocharger Turbines, in: Vol. 1 Turbo Expo 2002, ASME, Amsterdam, The Netherlands, 2002: p.1087–1095.
DOI: 10.1115/GT2002-30576
Google Scholar
[10]
B.T. Lebele-Alawa, H.I. Hart, S.O.T. Ogaji, S.D. Probert, Rotor-blades' profile influence on a gas-turbine's compressor effectiveness, Appl. Energy. 85 (2008) 494–505.
DOI: 10.1016/j.apenergy.2007.12.001
Google Scholar
[11]
K. Jiao, H. Sun, X. Li, H. Wu, E. Krivitzky, T. Schram, L.M. Larosiliere, Numerical simulation of air flow through turbocharger compressors with dual volute design, Appl. Energy. 86 (2009) 2494–2506.
DOI: 10.1016/j.apenergy.2009.02.019
Google Scholar
[12]
J. Galindo, P. Fajardo, R. Navarro, L.M. García-Cuevas, Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling, Appl. Energy. 103 (2013) 116–127.
DOI: 10.1016/j.apenergy.2012.09.013
Google Scholar
[13]
C. Abdelmadjid, S.-A. Mohamed, B. Boussad, CFD Analysis of the Volute Geometry Effect on the Turbulent Air Flow through the Turbocharger Compressor, Energy Procedia. 36 (2013) 746–755.
DOI: 10.1016/j.egypro.2013.07.087
Google Scholar
[14]
K. Jiao, H. Sun, X. Li, H. Wu, E. Krivitzky, T. Schram, L.M. Larosiliere, Numerical investigation of the influence of variable diffuser vane angles on the performance of a centrifugal compressor, Proc. Inst. Mech. Eng. Part J. Automob. Eng. 223 (2009) 1061–1070.
DOI: 10.1243/09544070JAUTO1202
Google Scholar
[15]
H. Kou, J. Lin, J. Zhang, Numerical study on vibration stress of rotating fan blade under aerodynamic load at critical speed, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 230 (2016) 1044–1058.
DOI: 10.1177/0954410015603071
Google Scholar
[16]
P. Newton, R. Martinez-Botas, M. Seiler, A Three-Dimensional Computational Study of Pulsating Flow Inside a Double Entry Turbine, J. Turbomach. 137 (2014) 031001.
DOI: 10.1115/1.4028217
Google Scholar
[17]
A. Romagnoli, C.D. Copeland, R. Martinez-Botas, M. Seiler, S. Rajoo, A. Costall, Comparison Between the Steady Performance of Double-Entry and Twin-Entry Turbocharger Turbines, J. Turbomach. 135 (2012) 011042.
DOI: 10.1115/1.4006566
Google Scholar
[18]
H. Aghaali, A. Hajilouy-Benisi, Experimental and Theoretical Investigation of Twin-Entry Radial Inflow Gas Turbine With Unsymmetrical Volute Under Full and Partial Admission Conditions, in: Vol. 6 Turbo Expo 2007 Parts B, ASME, Montreal, Canada, 2007: p.1099–1107.
DOI: 10.1115/GT2007-27807
Google Scholar
[19]
R. Bontempo, M. Cardone, M. Manna, G. Vorraro, A statistical approach to the analysis of the surge phenomenon, Energy. 124 (2017) 502–509.
DOI: 10.1016/j.energy.2017.02.026
Google Scholar
[20]
C.D. Copeland, R. Martinez-Botas, M. Seiler, Unsteady Performance of a Double Entry Turbocharger Turbine With a Comparison to Steady Flow Conditions, J. Turbomach. 134 (2012) 021022.
DOI: 10.1115/1.4003171
Google Scholar
[21]
A. Hajilouy-Benisi, M. Rad, M.R. Shahhosseini, Flow and performance characteristics of twin-entry radial turbine under full and extreme partial admission conditions, Arch. Appl. Mech. 79 (2009) 1127–1143.
DOI: 10.1007/s00419-008-0295-5
Google Scholar
[22]
B.P. Baikov, Features of the calculation of the turbine operating on gases of variable pressure, Proc. Cent. Res. Diesel Inst. (1955) 68–87.
Google Scholar
[23]
N.V. Petrovsky, Gas turbine supercharging of powerful two-stroke marine diesel engines, Sudostroenie, Leningrad, Russia, (1970).
Google Scholar
[24]
B.P. Baikov, V.T. Bordukov, P.V. Ivanov, R.S. Deych, Turbochargers for supercharged diesel engines. Handbook, Mashinostroenie, Leningrad, Russia, (1975).
Google Scholar
[25]
P.V. Ivanov, Calculation of a radial pulsed turbine taking into account the flow of gas and a simplified calculation, Proc. Cent. Res. Diesel Inst. (1960) 66–73.
Google Scholar
[26]
A.V. Passar, D.V. Timoshenko, Complex method for calculating the flow part of a radial-axial turbine of a turbo-compressor TKR-14, Avtomotive Ind. (2015) 31–35.
Google Scholar
[27]
A.V. Passar, D.V. Timoshenko, Designing a flow part of a radial-axial turbine using the Lagrange multipliers method, Fundam. Appl. Probl. Tech. Technol. (2015) 54–61.
Google Scholar
[28]
A.V. Passar, V.A. Lashko, D.V. Timoshenko, Perfection of the flowing part of turbine turbocharger TKR-14V-30 of the forced combined piston engine, Spravochnik Inzhenernyi Zhurnal. (2014) 32–38.
DOI: 10.14489/hb.2014.11.pp.032-038
Google Scholar
[29]
V.T. Mitrokhin, The choice of parameters and the calculation of the centripetal turbine in stationary and transient modes, Mashinostroenie, Moscow, Russia, (1974).
Google Scholar
[30]
A.V. Passar, V.A. Lashko, The analytical review of spatial methods of calculation of the turbine, Spravochnik Inzhenernyi Zhurnal. (2013) 2–12. http://www.handbook-j.ru/index.php/archive-eng/189-09-september (accessed October 10, 2018).
Google Scholar
[31]
V.A. Lashko, A.V. Passar, Calculation of kinetic energy losses in the flow part of the turbine as one of the problems in implementing an integrated approach, Bull. PNU. (2011) 79–90.
Google Scholar
[32]
V.A. Alexeev, V.A. Petrov, Mathematical description of heat release in turbo-piston engines at different regimes, Dvigatelestroyeniye. (1981) 3–5.
Google Scholar
[33]
S.L. Levkovich, Y.P. Voloshin, D.M. Kel'shteyn, On the issue of determining the coefficient of operation of compressors for boosting internal combustion engines, Intern. Combust. Engines. (1972) 98–103.
Google Scholar
[34]
G.N. Den, Design of the flow part of centrifugal compressors, Mashinostroenie, Leningrad, Russia, (1980).
Google Scholar
[35]
V.F. Ris, Centrifugal compressor machines, Mashinostroenie, Leningrad, Russia, (1981).
Google Scholar
[36]
G.Y. Stepanov, Fundamentals of the theory of blade machines, combined and gas turbine engines, Mashgiz, Moscow, Russia, (1958).
Google Scholar
[37]
A.V. Passar, Influence of the shape of the meridional contour of the impeller on the parameters of the gas flow in a radial-axial turbine gas turbine installation, Bull. Tomsk Polytech. Univ. Geo Assets Eng. 238 (2017) 33–48.
Google Scholar
[38]
A.E. Simson, Gas turbine supercharged diesel engines, 2nd ed., Mashinostroenie, Moscow, Russia, (1964).
Google Scholar