[1]
T. W. Latham, Fluid motion in a peristaltic pump, MS thesis, Massachusetts Institute of Technology, Cambridge, USA, (1966).
Google Scholar
[2]
D. Tripathi, Beg O Anwar, P. K. Gupta, R. Ganjam, M. Jagannath, DTM simulation of peristaltic viscoelastic biofluids flow in asymmetric porous media: A digestive transport model, Journal of Bionic Engineering, 12 (2015) 643-655.
DOI: 10.1016/s1672-6529(14)60154-2
Google Scholar
[3]
G. C. Shit, N. K. Ranjit, A. Sinha, Electro-magnetihydrodynamic flow of biofluids induced by peristaltic wave: A non-Newtonian model, Journal of Bionic Engineering, 13 (2016) 436-448.
DOI: 10.1016/s1672-6529(16)60317-7
Google Scholar
[4]
G. Manjunatha, C. Rajashekhar, Slip effects on peristaltic transport of Casson fluid in an inclined elastic tube with porous walls, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 43 (2018) 67-80.
DOI: 10.2478/ijame-2019-0020
Google Scholar
[5]
C. Rajashekhar, G. Manjunatha, K. V. Prasad, B. B. Baliga, V. Hanumesh, Peristaltic transport of two-layered blood flow using Herschel-Bulkley model, Cogent Engineering, 5 (2018) 1-16.
DOI: 10.1080/23311916.2018.1495592
Google Scholar
[6]
V. Hanumesh, G. Manjunatha, C. Rajashekhar, K. V. Prasad, Role of slip and heat transfer on peristaltic transport of Herschel-Bulkley fluid through an elastic tube, Multidiscipline Modelling in Materials and Structures, (2018).
DOI: 10.1108/mmms-11-2017-0144
Google Scholar
[7]
N. S. Akbar, S. Nadeem, Thermal and velocity slip effects on the peristaltic flow of a six constant Jeffery's fluid model, International Journal of Heat and Mass Transfer, 55 (2012) 3964-3970.
DOI: 10.1016/j.ijheatmasstransfer.2012.03.026
Google Scholar
[8]
N. S. Akbar, S. Nademm, H. T. Khan, Thermal and velocity slip effects on the MHD peristaltic flow with carbon nanotubes in an asymmetric channel: application of radiation therapy, Applied Nanoscience, 4 (2014) 849-857.
DOI: 10.1007/s13204-013-0265-2
Google Scholar
[9]
A. Sinha, G. C. Shit, N. K. Ranjit, Peristaltic transport of MHD flow and heat transfer in an asymmetric channel: Effects of variable viscosity, velocity-slip and temperature jump, Alexandria Engineering Journal, 54 (2015) 691-704.
DOI: 10.1016/j.aej.2015.03.030
Google Scholar
[10]
M. Javed, T. Hayat, M. Mustafa, B. Ahmad, Velocity and thermal slip effects on peristaltic motions of Walters-B-fluid, International Journal of Heat and Mass Transfer, 96 (2016) 210-217.
DOI: 10.1016/j.ijheatmasstransfer.2015.12.029
Google Scholar
[11]
N. S. Akbar, Influence of thermal and velocity slip on the peristaltic flow of Cu-water nanofluid with magnetic field, Applied Nanoscience, 6 (2016) 417-423.
DOI: 10.1007/s13204-015-0444-4
Google Scholar
[12]
M. G. Reddy, B. C. Prasannakumara, O. D. Makinde, Cross diffusion impacts on hydromagnetic radiative peristaltic Carreau-Casson nanofluid flow in an irregular Channel, Defect and Diffusion Forum, 377 (2017), 62-83.
DOI: 10.4028/www.scientific.net/ddf.377.62
Google Scholar
[13]
J. Reza, Oudina F-Mebarek, O. D. Makinde, MHD slip flow of Cu-Kerosene nanofluid in a channel with stretching walls using 3-stage lobatto IIIA formula, Defect and Diffusion Forum, 387 (2018) 51-62.
DOI: 10.4028/www.scientific.net/ddf.387.51
Google Scholar
[14]
Oudina F-Mebarek, O. D. Makinde, Numerical simulation of Oscillatory MHD natural convection in cylindrical annulus: Prandtl number effect, Defect and Diffusive Forum, 387 (2018) 417-427.
DOI: 10.4028/www.scientific.net/ddf.387.417
Google Scholar
[15]
Oudina F-Mebarek. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer-Asian Research, (2018).
DOI: 10.1002/htj.21375
Google Scholar
[16]
A. Wakif, Z. Boulahia, R. Sehaqui, A semianalytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno's mathematical model together with more realistic boundary conditions, Results in Physics, 9 (2018) 1438-1454.
DOI: 10.1016/j.rinp.2018.01.066
Google Scholar
[17]
A. Wakif, Z. Boulahia, F. Ali, M. R. Eid, R. Sehaqui, Numerical Analysis of the Unsteady Natural Convection MHD Couette Nanofluid Flow in the Presence of Thermal Radiation Using Single and Two-Phase Nanofluid Models for Cu-Water Nanofluids, International Journal of Applied and Computational Mathematics, 4 (2018) 81.
DOI: 10.1007/s40819-018-0513-y
Google Scholar
[18]
A. Wakif, Z. Boulahia, S. R. Mishra, M. M. Rashidi, R. Sehaqui, Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno's mathematical model, The European Journal Plus, 133 (2018) 181.
DOI: 10.1140/epjp/i2018-12037-7
Google Scholar
[19]
R. Latha, B. R. Kumar, O. D. Makinde, Effects of heat dissipation on the peristaltic flow of Jeffery and Newtonian fluid through an asymmetric channel with porous medium, Defect and Diffusive Forum, 387 (2018) 218-243.
DOI: 10.4028/www.scientific.net/ddf.387.218
Google Scholar
[20]
R. Latha, B. R. Kumar, O. D. Makinde, Peristaltic flow of Couple stress fluid in an asymmetric channel with partial slip, Defect and Diffusion Forum, 387 (2018) 385-402.
DOI: 10.4028/www.scientific.net/ddf.387.385
Google Scholar
[21]
S. Srinivas, R. Gayathri, M. Kothandapani, The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport, Computer Physics Communications, 180 (2009) 2115-2122.
DOI: 10.1016/j.cpc.2009.06.015
Google Scholar
[22]
S. Hina, M. Mustafa, T. Hayat, N. D. Alotaibi, On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties, Applied Mathematics and Computation, 263 (2015) 378-391.
DOI: 10.1016/j.amc.2015.04.068
Google Scholar
[23]
S. Hina, M. Mustafa, T. Hayat, On the exact solution for peristaltic flow of couple-stress fluid with wall properties, Bulgarian Chemical Communications, 47 (2015) 30-37.
Google Scholar
[24]
A. A. Khan, H. Tariq, Influence of wall properties on the peristaltic flow of a dusty Walter's B fluid, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (2018) 368.
DOI: 10.1007/s40430-018-1285-3
Google Scholar
[25]
S. Wada, H. Hayashi, Hydrodynamic lubrication of journal bearings by pseudoplastic lubricants, Bulletin of JSME, 69 (1971) 268-278.
DOI: 10.1299/jsme1958.14.268
Google Scholar
[26]
N. S. Akbar, S. Nadeem, Application of Rabinowitsch fluid model in peristalsis, Zeitschrift fur Naturforschung A, 69 (2014) 473-480.
DOI: 10.5560/zna.2014-0034
Google Scholar
[27]
H. Sadaf, S. Nadeem, Analysis of combined convective and viscous dissipation effects for peristaltic flow Rabinowitsch fluid model, Journal of Bionic Engineering, 14 (2017) 182-190.
DOI: 10.1016/s1672-6529(16)60389-x
Google Scholar
[28]
R. Saravana, K. Vajravelu, S. Sreenadh, Influence of compliant walls and heat transfer on the peristaltic transport of a Rabinowitsch fluid in an inclined channel, Zeitschrift fur Naturforschung A, (2018).
DOI: 10.1515/zna-2018-0181
Google Scholar