Effects Wall Properties on Peristaltic Transport of Rabinowitsch Fluid through an Inclined Non-Uniform Slippery Tube

Article Preview

Abstract:

The effects of slip and wall properties on the peristaltic mechanism of Rabinowitsch fluid flowing through a non-uniform inclined tube is investigated under the assumptions of long wavelength and small Reynold’s number. The governing equations of motion, momentum, and energy are rendered dimensionless by using suitable similarity transformations. The effects of the velocity slip parameter , thermal slip parameter, wall rigidity parameter, wall stiffness parameter and the viscous damping force parameter on velocity, temperature and streamlines are analyzed for shear thinning, viscous, and shear thickening fluid models. From the results, it is found that an increase in the value of velocity and thermal slip parameter enhances the velocity and temperature profiles for viscous and shear thinning fluids. Also, the volume of trapped bolus improves for an increase in the value of rigidity and stiffness parameter for all the three liquids, whereas it decreases for an increase in the value of the viscous damping force parameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-157

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. W. Latham, Fluid motion in a peristaltic pump, MS thesis, Massachusetts Institute of Technology, Cambridge, USA, (1966).

Google Scholar

[2] D. Tripathi, Beg O Anwar, P. K. Gupta, R. Ganjam, M. Jagannath, DTM simulation of peristaltic viscoelastic biofluids flow in asymmetric porous media: A digestive transport model, Journal of Bionic Engineering, 12 (2015) 643-655.

DOI: 10.1016/s1672-6529(14)60154-2

Google Scholar

[3] G. C. Shit, N. K. Ranjit, A. Sinha, Electro-magnetihydrodynamic flow of biofluids induced by peristaltic wave: A non-Newtonian model, Journal of Bionic Engineering, 13 (2016) 436-448.

DOI: 10.1016/s1672-6529(16)60317-7

Google Scholar

[4] G. Manjunatha, C. Rajashekhar, Slip effects on peristaltic transport of Casson fluid in an inclined elastic tube with porous walls, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 43 (2018) 67-80.

DOI: 10.2478/ijame-2019-0020

Google Scholar

[5] C. Rajashekhar, G. Manjunatha, K. V. Prasad, B. B. Baliga, V. Hanumesh, Peristaltic transport of two-layered blood flow using Herschel-Bulkley model, Cogent Engineering, 5 (2018) 1-16.

DOI: 10.1080/23311916.2018.1495592

Google Scholar

[6] V. Hanumesh, G. Manjunatha, C. Rajashekhar, K. V. Prasad, Role of slip and heat transfer on peristaltic transport of Herschel-Bulkley fluid through an elastic tube, Multidiscipline Modelling in Materials and Structures, (2018).

DOI: 10.1108/mmms-11-2017-0144

Google Scholar

[7] N. S. Akbar, S. Nadeem, Thermal and velocity slip effects on the peristaltic flow of a six constant Jeffery's fluid model, International Journal of Heat and Mass Transfer, 55 (2012) 3964-3970.

DOI: 10.1016/j.ijheatmasstransfer.2012.03.026

Google Scholar

[8] N. S. Akbar, S. Nademm, H. T. Khan, Thermal and velocity slip effects on the MHD peristaltic flow with carbon nanotubes in an asymmetric channel: application of radiation therapy, Applied Nanoscience, 4 (2014) 849-857.

DOI: 10.1007/s13204-013-0265-2

Google Scholar

[9] A. Sinha, G. C. Shit, N. K. Ranjit, Peristaltic transport of MHD flow and heat transfer in an asymmetric channel: Effects of variable viscosity, velocity-slip and temperature jump, Alexandria Engineering Journal, 54 (2015) 691-704.

DOI: 10.1016/j.aej.2015.03.030

Google Scholar

[10] M. Javed, T. Hayat, M. Mustafa, B. Ahmad, Velocity and thermal slip effects on peristaltic motions of Walters-B-fluid, International Journal of Heat and Mass Transfer, 96 (2016) 210-217.

DOI: 10.1016/j.ijheatmasstransfer.2015.12.029

Google Scholar

[11] N. S. Akbar, Influence of thermal and velocity slip on the peristaltic flow of Cu-water nanofluid with magnetic field, Applied Nanoscience, 6 (2016) 417-423.

DOI: 10.1007/s13204-015-0444-4

Google Scholar

[12] M. G. Reddy, B. C. Prasannakumara, O. D. Makinde, Cross diffusion impacts on hydromagnetic radiative peristaltic Carreau-Casson nanofluid flow in an irregular Channel, Defect and Diffusion Forum, 377 (2017), 62-83.

DOI: 10.4028/www.scientific.net/ddf.377.62

Google Scholar

[13] J. Reza, Oudina F-Mebarek, O. D. Makinde, MHD slip flow of Cu-Kerosene nanofluid in a channel with stretching walls using 3-stage lobatto IIIA formula, Defect and Diffusion Forum, 387 (2018) 51-62.

DOI: 10.4028/www.scientific.net/ddf.387.51

Google Scholar

[14] Oudina F-Mebarek, O. D. Makinde, Numerical simulation of Oscillatory MHD natural convection in cylindrical annulus: Prandtl number effect, Defect and Diffusive Forum, 387 (2018) 417-427.

DOI: 10.4028/www.scientific.net/ddf.387.417

Google Scholar

[15] Oudina F-Mebarek. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer-Asian Research, (2018).

DOI: 10.1002/htj.21375

Google Scholar

[16] A. Wakif, Z. Boulahia, R. Sehaqui, A semianalytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno's mathematical model together with more realistic boundary conditions, Results in Physics, 9 (2018) 1438-1454.

DOI: 10.1016/j.rinp.2018.01.066

Google Scholar

[17] A. Wakif, Z. Boulahia, F. Ali, M. R. Eid, R. Sehaqui, Numerical Analysis of the Unsteady Natural Convection MHD Couette Nanofluid Flow in the Presence of Thermal Radiation Using Single and Two-Phase Nanofluid Models for Cu-Water Nanofluids, International Journal of Applied and Computational Mathematics, 4 (2018) 81.

DOI: 10.1007/s40819-018-0513-y

Google Scholar

[18] A. Wakif, Z. Boulahia, S. R. Mishra, M. M. Rashidi, R. Sehaqui, Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno's mathematical model, The European Journal Plus, 133 (2018) 181.

DOI: 10.1140/epjp/i2018-12037-7

Google Scholar

[19] R. Latha, B. R. Kumar, O. D. Makinde, Effects of heat dissipation on the peristaltic flow of Jeffery and Newtonian fluid through an asymmetric channel with porous medium, Defect and Diffusive Forum, 387 (2018) 218-243.

DOI: 10.4028/www.scientific.net/ddf.387.218

Google Scholar

[20] R. Latha, B. R. Kumar, O. D. Makinde, Peristaltic flow of Couple stress fluid in an asymmetric channel with partial slip, Defect and Diffusion Forum, 387 (2018) 385-402.

DOI: 10.4028/www.scientific.net/ddf.387.385

Google Scholar

[21] S. Srinivas, R. Gayathri, M. Kothandapani, The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport, Computer Physics Communications, 180 (2009) 2115-2122.

DOI: 10.1016/j.cpc.2009.06.015

Google Scholar

[22] S. Hina, M. Mustafa, T. Hayat, N. D. Alotaibi, On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties, Applied Mathematics and Computation, 263 (2015) 378-391.

DOI: 10.1016/j.amc.2015.04.068

Google Scholar

[23] S. Hina, M. Mustafa, T. Hayat, On the exact solution for peristaltic flow of couple-stress fluid with wall properties, Bulgarian Chemical Communications, 47 (2015) 30-37.

Google Scholar

[24] A. A. Khan, H. Tariq, Influence of wall properties on the peristaltic flow of a dusty Walter's B fluid, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (2018) 368.

DOI: 10.1007/s40430-018-1285-3

Google Scholar

[25] S. Wada, H. Hayashi, Hydrodynamic lubrication of journal bearings by pseudoplastic lubricants, Bulletin of JSME, 69 (1971) 268-278.

DOI: 10.1299/jsme1958.14.268

Google Scholar

[26] N. S. Akbar, S. Nadeem, Application of Rabinowitsch fluid model in peristalsis, Zeitschrift fur Naturforschung A, 69 (2014) 473-480.

DOI: 10.5560/zna.2014-0034

Google Scholar

[27] H. Sadaf, S. Nadeem, Analysis of combined convective and viscous dissipation effects for peristaltic flow Rabinowitsch fluid model, Journal of Bionic Engineering, 14 (2017) 182-190.

DOI: 10.1016/s1672-6529(16)60389-x

Google Scholar

[28] R. Saravana, K. Vajravelu, S. Sreenadh, Influence of compliant walls and heat transfer on the peristaltic transport of a Rabinowitsch fluid in an inclined channel, Zeitschrift fur Naturforschung A, (2018).

DOI: 10.1515/zna-2018-0181

Google Scholar