[1]
T.N. Anderson, M. Duke, J. K. Carson. Experimental determination of natural convection heat transfer coefficients in an attic shaped enclosure, International Communications in Heat and Mass Transfer. 37 (2010) 360-363.
DOI: 10.1016/j.icheatmasstransfer.2010.01.008
Google Scholar
[2]
V. A. Akinsete and T. A. Coleman. Heat transfer by steady laminar free convection in triangular enclosures. International Journal of Heat and Mass Transfer. 25 (7) (1982) 991-998.
DOI: 10.1016/0017-9310(82)90074-6
Google Scholar
[3]
F. Gugliermetti and F. Bisegna. Saving energy in residential buildings: the use of fully reversible windows, Energy. 32 (2007) 1235-1247.
DOI: 10.1016/j.energy.2006.08.004
Google Scholar
[4]
Z. Zhang, A. Bejan, J. L. Lage. Natural convection in a vertical enclosure with internal permeable screen, J. Heat Transfer. 113 (1991) 377-383.
DOI: 10.1115/1.2910572
Google Scholar
[5]
R. D. Flack, T. T. Konopnicki and J. H. Rooke. The measurement of natural convective heat transfer in triangular enclosures, J. Heat Transfer, Trans. ASME.101 (1979) 648-654.
DOI: 10.1115/1.3451051
Google Scholar
[6]
D. Poulikakos, A. Bejan. The fluid mechanics of an attic space. J. Fluid Mech. 131 (1983) 251-269.
DOI: 10.1017/s0022112083001317
Google Scholar
[7]
V. A. Akinsete and T.A. Coleman. Heat transfer by steady laminar free convection in triangular enclosures. Int. J. Heat Mass Transfer. 25 (1987) 991-998.
DOI: 10.1016/0017-9310(82)90074-6
Google Scholar
[8]
Y.E. Karyakin, Y.A. Sokovishin, O.G. Martynenko. Transient natural convection in triangular enclosures, Int. J. Heat Mass Transfer. 31 (1988) 1759-1766.
DOI: 10.1016/0017-9310(88)90190-1
Google Scholar
[9]
S. C. Kaushik, R. Kumar, H. P. Garg, J. Prakash. Transient analysis of a triangular built in storage solar water heater under winter conditions. Heat Recovery Systems & CHP. 14 (4) (1994) 337-341.
DOI: 10.1016/0890-4332(94)90037-x
Google Scholar
[10]
R. D. Flack, K. Brun, R. J. Schnipke. Measurement and prediction of natural convection velocities in triangular enclosures. International Journal of Heat and Fluid Flow. 16 (2) (1995) 106-113.
DOI: 10.1016/0142-727x(94)00001-s
Google Scholar
[11]
G.A. Holtzman, R.W. Hill, K.S. Ball. Laminar natural convection in isosceles triangular enclosures heated from below and symmetrically cooled from above, J. Heat Transfer, Trans. ASME. 122 (2000) 485-491.
DOI: 10.1115/1.1288707
Google Scholar
[12]
H. Asan, L. Namli. Laminar natural convection in a pitched roof of triangular cross-section: summer day boundary conditions. Energy and Buildings. 33 (2000) 69-73.
DOI: 10.1016/s0378-7788(00)00066-9
Google Scholar
[13]
E.H. Ridouane, A. Campo, M. McGarry.Numerical computation of buoyant airflows confined to attic spaces under opposing hot and cold wall conditions, Int. J. Therm. Sci. 44 (2005) 944-952.
DOI: 10.1016/j.ijthermalsci.2005.03.008
Google Scholar
[14]
E.H. Ridouane, A. Campo.Relationship between thermal convection intensity and aspect ratio of two triangular cavities inscribed in horizontal rectangular cavities, Int. J. Num. Meth. Heat Fluid Flow. 16 (2006) 338-355.
DOI: 10.1108/09615530610649753
Google Scholar
[15]
A. Koca. Numerical investigation of heat transfer with laminar natural convection in different roof types, PhD Thesis, Firat University, Turkey, Elazig. (2005).
Google Scholar
[16]
Y. Varol, A. Koca, H.F. Oztop. Laminar natural convection in saltbox roofs for both summerlike and winterlike boundary conditions, J. Appl. Sci. 6 (12) (2006) 2617-2622.
DOI: 10.3923/jas.2006.2617.2622
Google Scholar
[17]
A. Koca, H.F. Oztop, Y. Varol. The effects of Prandtl number on natural convection in triangular enclosures with localized heating from below, International Communications in Heat and Mass Transfer. 34 (2007) 511-519.
DOI: 10.1016/j.icheatmasstransfer.2007.01.006
Google Scholar
[18]
A. Omri, M. Najjari, S.B. Nasrallah. Numerical analysis of natural buoyancy-induced regimes in isosceles triangular cavities, Numer. Heat Transfer; Part A-Appl. 52 (2007) 661-678.
DOI: 10.1080/10407780701339967
Google Scholar
[19]
T. Basak, S. Roy, C. Thirumalesha. Finite element analysis of steady natural convection in triangular enclosure: Effects of various thermal boundary conditions. Chem. Eng. Sci. 62 (2007) 2623-2640.
DOI: 10.1016/j.ces.2007.01.053
Google Scholar
[20]
Y. Varol, A. Koca, H.F. Oztop. Natural convection heat transfer in Gambrel roofs, Building and Environment. 42 (2007) 1291-1297.
DOI: 10.1016/j.buildenv.2005.11.013
Google Scholar
[21]
C. Lei, S.W. Armfield, J.C. Patterson. Unsteady natural convection in a water-filled isosceles triangular enclosure heated from below, Int. J. Heat Mass Transfer. 51 (2008) 2637-2650.
DOI: 10.1016/j.ijheatmasstransfer.2007.09.036
Google Scholar
[22]
E.F. Kent. Numerical analysis of laminar natural convection in isosceles triangular enclosures for cold base and hot inclined walls. Mechanics Res. Comm. 36 (4) (2009) 497-508.
DOI: 10.1016/j.mechrescom.2008.11.002
Google Scholar
[23]
S.C. Saha. Unsteady natural convection in a triangular enclosure under isothermal heating, Energy Build. 43 (2-3) (2011) 695-703.
DOI: 10.1016/j.enbuild.2010.11.014
Google Scholar
[24]
J. Sieres, A. Campo, E.H. Ridouane, J.F. Seara.Effect of surface radiation on buoyant convection in vertical triangular cavities with variable aperture angles. Int. J. Heat Mass Transfer. 50 (2007) 5139-5149.
DOI: 10.1016/j.ijheatmasstransfer.2007.07.006
Google Scholar
[25]
M. Yadan, C. Lei, J. Patterson. Natural convection in a triangular enclosure induced by solar radiation. 16thAustralain Fluid Mechanics Conference 2-7 December. (2007).
Google Scholar
[26]
A. Amrani, N. Dihmani, S. Amraqui, A. Mezrhab. Combined Natural Convection and Thermal Radiation Heat Transfer in a Triangular Enclosure with an Inner Rectangular Body, Defect and diffusion forum 384 (2018) 49-68.
DOI: 10.4028/www.scientific.net/ddf.384.49
Google Scholar
[27]
S. V. Patankar. Numerical heat transfer and fluid flow. New York, NY: McGraw-Hill. (1980).
Google Scholar
[28]
A. Mezrhab and M. Bouzidi. Computation of view factors for surfaces of complex shape including screening effects and using a boundary element, Engineering Computations: International Journal for Computer-aided Engineering & Software. 22(2) (2005) 132-148.
DOI: 10.1108/02644400510585457
Google Scholar
[29]
H. Asan and L. Namli. Numerical simulation of buoyant flow in a roof of triangular cross section under winter day boundary conditions, Energy Buildings 33 (2001) 753-757.
DOI: 10.1016/s0378-7788(01)00063-9
Google Scholar
[30]
A. Koca, H. F. Oztop, Y. Varol. Numerical analysis of natural convection in shed roofs with eave of buildings for cold climates. Computers and Mathematics with Applications 56 (2008) 3165-3174.
DOI: 10.1016/j.camwa.2008.07.012
Google Scholar
[31]
M. Kassemi, and M. H. N. Naraghi. Analysis of radiation natural convection interactions in 1-g and low-g environments using the discrete exchange factor method. International journal of heat mass transfer. 36 (12) (1993) 4141-4149.
DOI: 10.1016/0017-9310(93)90076-i
Google Scholar