[1]
D. Rosenthal and R. Schmerber, Thermal study of arc welding,, Weld. J., vol. 17, no. 4, p.2–8, (1938).
Google Scholar
[2]
D. Rosenthal, Mathematical Theory of Heat Distribution During Welding and Cutting,, Weld. J., vol. 20, no. 5, p.220–234, (1941).
Google Scholar
[3]
D. Rosenthal, The theory of moving sources of heat and its application to metal treatments,, Trans. ASME, vol. 68, p.849–866, (1946).
DOI: 10.1115/1.4018626
Google Scholar
[4]
J. Goldak, M. Bibby, J. Moore, R. House, and B. Patel, Computer modeling of heat flow in welds,, Metall. Trans. B, vol. 17, no. 3, p.587–600, (1986).
DOI: 10.1007/bf02670226
Google Scholar
[5]
N. T. Nguyen, A. Ohta, K. Matsuoka, N. Suzuki, and Y. Maeda, Analytical Solutions for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Sources,, Weld. Res., vol. I, no. August, p.265–274, (1999).
Google Scholar
[6]
R. H. Yeh, S. P. Liaw, and H. Bin Yu, Thermal analysis of welding on aluminum plates,, J. Mar. Sci. Technol., vol. 11, no. 4, p.213–220, (2003).
Google Scholar
[7]
R. H. Yeh, S. P. Liaw, and Y. P. Tu, Transient three-dimensional analysis of gas tungsten arc welding plates,, Numer. Heat Transf. Part A Appl., vol. 51, no. 6, p.573–592, (2007).
DOI: 10.1080/10407780600878966
Google Scholar
[8]
P. Biswas and N. R. Mandal, Thermomechanical finite element analysis and experimental investigation of single-pass single-sided submerged arc welding of C-Mn steel plates,, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 224, no. 4, p.627–639, (2010).
DOI: 10.1243/09544054jem1624
Google Scholar
[9]
W. G. Essers and A. R. Walter, Heat Transfer and Penetration Mechanisms with GMA and Plasma-GMA Welding,, Weld. Res. Suppl., no. February, pp. 37s–42s, (1981).
Google Scholar
[10]
K. C. Tsao and C. S. Wu, Fluid flow and heat transfer in GMA weld pools,, Weld. J., vol. 67, no. 3, pp. 70s–75s, (1988).
Google Scholar
[11]
H. Yu et al., Microstructural Evolution and Resulting Mechanical Properties of Weld Joints upon Flux Cored Arc Welding and Post-Weld Heat Treatment,, Defect Diffus. Forum, vol. 283–286, p.439–446, (2009).
DOI: 10.4028/www.scientific.net/ddf.283-286.439
Google Scholar
[12]
A. Abbasnejad, M. J. Maghrebi, and H. B. Tabrizi, A high order time advancement scheme for prediction of solidification processes,, Defect Diffus. Forum, vol. 297–301, p.779–784, (2010).
DOI: 10.4028/www.scientific.net/ddf.297-301.779
Google Scholar
[13]
A. Ghosh, S. Chattopadhyaya, and N. K. Singh, Prediction of Weld Bead Parameters, Transient Temperature Distribution & HAZ Width of Submerged Arc Welded Structural Steel Plates,, Defect Diffus. Forum, vol. 326–328, p.405–409, (2012).
DOI: 10.4028/www.scientific.net/ddf.326-328.405
Google Scholar
[14]
A. Ghosh and S. Chattopadhyaya, Prediction of Transient Temperature Distribution, HAZ Width and Microstructural Analysis of Submerged Arc-Welded Structural Steel Plates,, Defect Diffus. Forum, vol. 316–317, p.135–152, (2011).
DOI: 10.4028/www.scientific.net/ddf.316-317.135
Google Scholar
[15]
S. A. David, S. S. Babu, and J. M. Vitek, Welding: Solidification and microstructure,, Jom, vol. 55, no. 6, p.14–20, (2003).
DOI: 10.1007/s11837-003-0134-7
Google Scholar
[16]
A. Yadav, A. Ghosh, and A. Kumar, Experimental and numerical study of thermal field and weld bead characteristics in submerged arc welded plate,, J. Mater. Process. Technol., vol. 248, pp.262-274, (2017).
DOI: 10.1016/j.jmatprotec.2017.05.021
Google Scholar
[17]
H. Hu and S. A. Argyropoulos, Mathematical modelling of solidification and melting: A review,, Model. Simul. Mater. Sci. Eng., vol. 4, no. 4, p.371–396, (1996).
DOI: 10.1088/0965-0393/4/4/004
Google Scholar
[18]
N. Pathak, A. Kumar, A. Yadav, and P. Dutta, Effects of mould filling on evolution of the solid-liquid interface during solidification,, Appl. Therm. Eng., vol. 29, no. 17–18, p.3669–3678, (2009).
DOI: 10.1016/j.applthermaleng.2009.06.026
Google Scholar
[19]
A. Yadav, A. Ghosh, and A. Kumar, Thermal Transport Phenomena in Multi-layer Deposition Using Arc Welding Process,, 3D Printing and Additive Manufacturing Technologies, Springer Singapore, p.15–27, (2019).
DOI: 10.1007/978-981-13-0305-0_2
Google Scholar
[20]
A. Ghosh, A. Yadav, and A. Kumar, Modelling and experimental validation of moving tilted volumetric heat source in gas metal arc welding process,, J. Mater. Process. Technol., vol. 239, pp.52-65, (2017).
DOI: 10.1016/j.jmatprotec.2016.08.010
Google Scholar
[21]
P. Reddy, V. Patel, A. Yadav, S. Patel, and A. Kumar, Modelling and simulation of equilibrium and non-equilibrium solidification in laser spot welding,, IOP Conf. Ser. Mater. Sci. Eng., vol. 310, no. 1., (2018).
DOI: 10.1088/1757-899x/310/1/012092
Google Scholar
[22]
R. Singh and A. Yadav, Experimental study of effect of process parameters for heat generation in friction stir welding Experimental study of effect of process parameters for heat generation in friction stir welding,, IOP Conf. Ser. Mater. Sci. Eng., vol. 402, no. 1, (2018).
DOI: 10.1088/1757-899x/402/1/012131
Google Scholar