Solution of Fourth Order Diffusion Equations and Analysis Using the Second Moment

Article Preview

Abstract:

The classical concept of diffusion characterized by Fick’s law is well suited for describing a wide class of practical problems of interest. Nevertheless, it has been observed that it is not enough to properly represent other relevant applications of practical interest. When in a system of particles their spreading is slower or faster than predicted by the classical diffusion model, such a phenomenon is referred to as anomalous diffusion. Time fractional, space fractional and even space-time fractional equations are widely used to model phenomena such as solute transport in porous media, financial modelling and cancer tumor behavior. Considering the effects of partial and temporary retention in dispersion processes a new analytical formulation was derived to simulate anomalous diffusion. The new approach leads to a fourth-order partial differential equation (PDE) and assumes the existence of two concomitant fluxes. This work investigates the behavior of the bi-flux approach in one dimensional (1D) medium evaluating the mean square displacement for different cases in order to classify the diffusion process in normal, sub-diffusive or super-diffusive.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-20

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fick, Uber diffusion, Ann. Pys. 170 n. 1 (1855) 59–86.

Google Scholar

[2] J. Klafter, I. M. Sokolov, Anomalous diffusion spreads its wings, Physics World, 18 n. 8, (2005) 29–32.

DOI: 10.1088/2058-7058/18/8/33

Google Scholar

[3] C. Nicholson, E. Syková, Extracellular space structure revealed by diffusion analysis, Trends in Neuroscience, 21 (1998) 207–215.

DOI: 10.1016/s0166-2236(98)01261-2

Google Scholar

[4] L. A. Richards, Cappilary conduction of liquids through porous mediums. Physics, 1 n. 5 (1931) 318–333.

DOI: 10.1063/1.1745010

Google Scholar

[5] Benson DA, The fractional advection-dispersion equation: development and applications, Ph.D. thesis, University of Nevada, USA (1998).

Google Scholar

[6] Moradi G., B. Mehdinejadiani, Modelling solute transport in homogeneous and heterogeneous porous media using spatial fractional advection-dispersion equation, Soil & Water Research 13 (2018) 18-28.

DOI: 10.17221/245/2016-swr

Google Scholar

[7] J. Blackledge, Application of the fractional diffusion equation for predicting market behavior, International Journal of Applied Mathematics, 40 n. 3 (2010) 130–158.

Google Scholar

[8] O. S. Iyiola, F. D. Zaman, A fractional diffusion equation model for cancer tumor, AIP Advances, 4 n. 10 (2014) 107-121.

DOI: 10.1063/1.4898331

Google Scholar

[9] A. McNabb, P. Foster, A new analysis of the diffusion of hydrogen in iron and ferritic steels, Transactions of the Metallurgical Society of AIME, 227 (1963) 618-627.

Google Scholar

[10] H. Atsumi, Hydrogen bulk retention in graphite and kinetics of diffusion, Journal of Nuclear Materials (2002) 1466–1470.

DOI: 10.1016/s0022-3115(02)01069-3

Google Scholar

[11] M. V. D'Angelo, E. Fontana, R. Chertcoff, M. Rosen, Retention phenomena in non-Newtonian fluids flow, Physica A: Statistical Mechanics and its Applications, 327 n. 1, (2003) 44-48.

DOI: 10.1016/s0378-4371(03)00436-9

Google Scholar

[12] L. Bevilacqua, A. C. N. R. Galeão, F.P. Costa, A new analytical formulation of retention effects on particle diffusion process, An Acad Bras Cienc. 83 (2011) 1443-1464.

DOI: 10.1590/s0001-37652011005000033

Google Scholar

[13] L. Bevilacqua, A. C. N. R. Galeão, J. G. Simas, A. P. R. Doce, A new theory for anomalous diffusion with a bimodal flux distribution, J. Brazilian Soc. Mech Sci Eng. 35 n.4 (2013) 1-10.

DOI: 10.1007/s40430-013-0041-y

Google Scholar

[14] L. G. Silva, D. C. Knupp, L. Bevilacqua, A. C. N. R. Galeão, A. J. Silva Neto, Inverse problem in anomalous diffusion with uncertainty propagation, Computer Assisted Methods in Engineering and Science, 21 (2014) 245–255.

DOI: 10.1007/978-3-319-96433-1_9

Google Scholar

[15] D. C. Knupp, L. G. Silva, L. Bevilacqua, A. C. N. R. Galeão, A. J. Silva Neto, Inverse Analysis of a New Anomalous Diffusion Model Employing Maximum Likelihood and Bayesian Estimation, in: A. J. Silva Neto, O. Lannes Santiago, G. N. Silva, Mathematical Modeling and Computational Intelligence in Engineering Applications, Springer International Publishing, Switzerland, 2016, pp.89-104.

DOI: 10.1007/978-3-319-38869-4_7

Google Scholar

[16] L. G. Silva, D. C. Knupp, A. C. N. R. Galeão, A. J. Silva Neto, Inverse Problem of an Anomalous Diffusion Model Employing Lightning Optimization Algorithm, in: G. M. Platt, X. – S. Yang, A. J. Silva Neto. Computational Intelligence, Optimization and Inverse Problems with Applications in Engineering, Springer Nature, Switzerland, 2019, pp.185-200.

DOI: 10.1007/978-3-319-96433-1_9

Google Scholar

[17] J. F. V. Vasconcellos, G. M. Marinho, J. H. Zanni, Numerical analysis of the anomalous diffusion equation with a bimodal flux, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 33 3–4 (2017) 242-249. (in Portuguese).

DOI: 10.1016/j.rimni.2016.05.001

Google Scholar

[18] L. G. Silva, D. C. Knupp, L. Bevilacqua, A. C. N. R. Galeão, A. J. Silva Neto, Formulation and solution of an Inverse Anomalous Diffusion Problem with Stochastic Techniques, Ciência e Natura, 36, (2014) 82–96. (in Portuguese).

Google Scholar

[19] M. Jiang, L. Bevilacqua, A. J. Silva Neto, A. C. N. R. Galeão, J. Zhu, Bi-Flux Theory Applied to the Dispersion of Particle in Anisotropic Substratum, Applied Mathematical Modeling, 64, (2018) 121-134.

DOI: 10.1016/j.apm.2018.07.022

Google Scholar

[20] M. Jiang, The fourth order diffusion model for a bi-flux mass transfer. Ph.D. Thesis, Federal University of Rio de Janeiro, Brazil, (2017).

Google Scholar

[21] J. Lugon Jr., P. P. G. W. Rodrigues, L. Bevilacqua, D. C. Knupp, J. F. V. Vasconcellos, A. J. Silva Neto, Study of the secondary diffusion coefficient in problems of anomalous diffusion, Proceedings of the XXXVIII Congresso Nacional de Matemática Aplicada e Computacional – CNMAC, 6 n.2 (2018), Campinas, Brazil. (in Portuguese).

Google Scholar

[22] L. VLAHOS, H. ISLIKER, Normal and anomalous diffusion: A tutorial. arXiv: 0805.0419, (2008).

Google Scholar

[23] E. K Lenzi, L. C. Malacarne, R. S. Mendes, I. T. Pedron, Anomalous diffusion, nonlinear fractional Fokker–Planck equation and solutions, Physica A: Statistical Mechanics and its Applications, 319 (2003) 245-252.

DOI: 10.1016/s0378-4371(02)01495-4

Google Scholar

[24] R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). URL https://www.R-project.org/.

Google Scholar

[25] J. Lugon Jr., P. P. G. W. Rodrigues, L. Bevilacqua, G. M. Marinho, D. C. Knupp, J. F. V. Vasconcellos, A. J. Silva Neto, AdvDif4: Solving 1D Advection Bi-Flux Diffusion Equation, 2018). https://CRAN.R-project.org/package=AdvDif4.

Google Scholar

[26] Wolfram Research, Inc., Mathematica, Version 11.3, Champaign, IL, (2018).

Google Scholar

[27] A. C. N. R. Galeão, L. Bevilacqua, S. L. Delphin, F. S. P. Costa, A Numerical Solution of the Diffusion-Retention Problem in Homogeneous Media, Proceedings of the 13th Congress of Thermal Science and Engineering, Uberlândia, Brazil (2010).

Google Scholar

[28] J. D. Murray, Mathematical Biology, 3. ed, Springer-Verlag, New York, (2008).

Google Scholar

[29] F. D. Moura Neto, and A. J. Silva Neto, An Introduction to Inverse Problems with Applications, Springer-Verlag, Berlin Heidelberg, (2013).

Google Scholar

[30] C. Hok Eab, S. C. Lim, Accelerating and retarding anomalous diffusion. Journal of Physics A: Mathematical and Theorical, 45, 14, p.17, (2012).

Google Scholar

[31] S. H. Rakotonasy, Modèle fractionnaire pour la sous-diffusion: version stochastique et edp. Ph.D. thesis, Université d'Avignon, France, (2012).

Google Scholar