[1]
A. Fick, Uber diffusion, Ann. Pys. 170 n. 1 (1855) 59–86.
Google Scholar
[2]
J. Klafter, I. M. Sokolov, Anomalous diffusion spreads its wings, Physics World, 18 n. 8, (2005) 29–32.
DOI: 10.1088/2058-7058/18/8/33
Google Scholar
[3]
C. Nicholson, E. Syková, Extracellular space structure revealed by diffusion analysis, Trends in Neuroscience, 21 (1998) 207–215.
DOI: 10.1016/s0166-2236(98)01261-2
Google Scholar
[4]
L. A. Richards, Cappilary conduction of liquids through porous mediums. Physics, 1 n. 5 (1931) 318–333.
DOI: 10.1063/1.1745010
Google Scholar
[5]
Benson DA, The fractional advection-dispersion equation: development and applications, Ph.D. thesis, University of Nevada, USA (1998).
Google Scholar
[6]
Moradi G., B. Mehdinejadiani, Modelling solute transport in homogeneous and heterogeneous porous media using spatial fractional advection-dispersion equation, Soil & Water Research 13 (2018) 18-28.
DOI: 10.17221/245/2016-swr
Google Scholar
[7]
J. Blackledge, Application of the fractional diffusion equation for predicting market behavior, International Journal of Applied Mathematics, 40 n. 3 (2010) 130–158.
Google Scholar
[8]
O. S. Iyiola, F. D. Zaman, A fractional diffusion equation model for cancer tumor, AIP Advances, 4 n. 10 (2014) 107-121.
DOI: 10.1063/1.4898331
Google Scholar
[9]
A. McNabb, P. Foster, A new analysis of the diffusion of hydrogen in iron and ferritic steels, Transactions of the Metallurgical Society of AIME, 227 (1963) 618-627.
Google Scholar
[10]
H. Atsumi, Hydrogen bulk retention in graphite and kinetics of diffusion, Journal of Nuclear Materials (2002) 1466–1470.
DOI: 10.1016/s0022-3115(02)01069-3
Google Scholar
[11]
M. V. D'Angelo, E. Fontana, R. Chertcoff, M. Rosen, Retention phenomena in non-Newtonian fluids flow, Physica A: Statistical Mechanics and its Applications, 327 n. 1, (2003) 44-48.
DOI: 10.1016/s0378-4371(03)00436-9
Google Scholar
[12]
L. Bevilacqua, A. C. N. R. Galeão, F.P. Costa, A new analytical formulation of retention effects on particle diffusion process, An Acad Bras Cienc. 83 (2011) 1443-1464.
DOI: 10.1590/s0001-37652011005000033
Google Scholar
[13]
L. Bevilacqua, A. C. N. R. Galeão, J. G. Simas, A. P. R. Doce, A new theory for anomalous diffusion with a bimodal flux distribution, J. Brazilian Soc. Mech Sci Eng. 35 n.4 (2013) 1-10.
DOI: 10.1007/s40430-013-0041-y
Google Scholar
[14]
L. G. Silva, D. C. Knupp, L. Bevilacqua, A. C. N. R. Galeão, A. J. Silva Neto, Inverse problem in anomalous diffusion with uncertainty propagation, Computer Assisted Methods in Engineering and Science, 21 (2014) 245–255.
DOI: 10.1007/978-3-319-96433-1_9
Google Scholar
[15]
D. C. Knupp, L. G. Silva, L. Bevilacqua, A. C. N. R. Galeão, A. J. Silva Neto, Inverse Analysis of a New Anomalous Diffusion Model Employing Maximum Likelihood and Bayesian Estimation, in: A. J. Silva Neto, O. Lannes Santiago, G. N. Silva, Mathematical Modeling and Computational Intelligence in Engineering Applications, Springer International Publishing, Switzerland, 2016, pp.89-104.
DOI: 10.1007/978-3-319-38869-4_7
Google Scholar
[16]
L. G. Silva, D. C. Knupp, A. C. N. R. Galeão, A. J. Silva Neto, Inverse Problem of an Anomalous Diffusion Model Employing Lightning Optimization Algorithm, in: G. M. Platt, X. – S. Yang, A. J. Silva Neto. Computational Intelligence, Optimization and Inverse Problems with Applications in Engineering, Springer Nature, Switzerland, 2019, pp.185-200.
DOI: 10.1007/978-3-319-96433-1_9
Google Scholar
[17]
J. F. V. Vasconcellos, G. M. Marinho, J. H. Zanni, Numerical analysis of the anomalous diffusion equation with a bimodal flux, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 33 3–4 (2017) 242-249. (in Portuguese).
DOI: 10.1016/j.rimni.2016.05.001
Google Scholar
[18]
L. G. Silva, D. C. Knupp, L. Bevilacqua, A. C. N. R. Galeão, A. J. Silva Neto, Formulation and solution of an Inverse Anomalous Diffusion Problem with Stochastic Techniques, Ciência e Natura, 36, (2014) 82–96. (in Portuguese).
Google Scholar
[19]
M. Jiang, L. Bevilacqua, A. J. Silva Neto, A. C. N. R. Galeão, J. Zhu, Bi-Flux Theory Applied to the Dispersion of Particle in Anisotropic Substratum, Applied Mathematical Modeling, 64, (2018) 121-134.
DOI: 10.1016/j.apm.2018.07.022
Google Scholar
[20]
M. Jiang, The fourth order diffusion model for a bi-flux mass transfer. Ph.D. Thesis, Federal University of Rio de Janeiro, Brazil, (2017).
Google Scholar
[21]
J. Lugon Jr., P. P. G. W. Rodrigues, L. Bevilacqua, D. C. Knupp, J. F. V. Vasconcellos, A. J. Silva Neto, Study of the secondary diffusion coefficient in problems of anomalous diffusion, Proceedings of the XXXVIII Congresso Nacional de Matemática Aplicada e Computacional – CNMAC, 6 n.2 (2018), Campinas, Brazil. (in Portuguese).
Google Scholar
[22]
L. VLAHOS, H. ISLIKER, Normal and anomalous diffusion: A tutorial. arXiv: 0805.0419, (2008).
Google Scholar
[23]
E. K Lenzi, L. C. Malacarne, R. S. Mendes, I. T. Pedron, Anomalous diffusion, nonlinear fractional Fokker–Planck equation and solutions, Physica A: Statistical Mechanics and its Applications, 319 (2003) 245-252.
DOI: 10.1016/s0378-4371(02)01495-4
Google Scholar
[24]
R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). URL https://www.R-project.org/.
Google Scholar
[25]
J. Lugon Jr., P. P. G. W. Rodrigues, L. Bevilacqua, G. M. Marinho, D. C. Knupp, J. F. V. Vasconcellos, A. J. Silva Neto, AdvDif4: Solving 1D Advection Bi-Flux Diffusion Equation, 2018). https://CRAN.R-project.org/package=AdvDif4.
Google Scholar
[26]
Wolfram Research, Inc., Mathematica, Version 11.3, Champaign, IL, (2018).
Google Scholar
[27]
A. C. N. R. Galeão, L. Bevilacqua, S. L. Delphin, F. S. P. Costa, A Numerical Solution of the Diffusion-Retention Problem in Homogeneous Media, Proceedings of the 13th Congress of Thermal Science and Engineering, Uberlândia, Brazil (2010).
Google Scholar
[28]
J. D. Murray, Mathematical Biology, 3. ed, Springer-Verlag, New York, (2008).
Google Scholar
[29]
F. D. Moura Neto, and A. J. Silva Neto, An Introduction to Inverse Problems with Applications, Springer-Verlag, Berlin Heidelberg, (2013).
Google Scholar
[30]
C. Hok Eab, S. C. Lim, Accelerating and retarding anomalous diffusion. Journal of Physics A: Mathematical and Theorical, 45, 14, p.17, (2012).
Google Scholar
[31]
S. H. Rakotonasy, Modèle fractionnaire pour la sous-diffusion: version stochastique et edp. Ph.D. thesis, Université d'Avignon, France, (2012).
Google Scholar