Direct and Inverse Problems for a Fourth Order Anomalous Diffusion Model

Article Preview

Abstract:

The second order equation (also known as Fick’s equation) is derived from a classical well-known theory, but it is not enough to model all applications of interest. Recently, fractional equations and higher order equations began to receive more attention, demanding increased research efforts. They are used to simulate the diffusion process in many important applications in sciences, such as chemistry, heat and mass transfer, biology and ecology. In this work, the sensitivity analysis is performed for a recently developed anomalous diffusion model in order to evaluate the possibility of estimating a set of parameters that are part of the fourth order equation model, including the parameters representing the variation of the fraction of particles that are allowed to diffuse using a sigmoid function. Finally, after the sensitivity analysis the Inverse Problem approach is used to estimate viable parameters that are necessary for simulation in the cases considered. The differential equation was approximated using the Finite Difference Method, and that solution was implemented in the RStudio platform. The Sensitivity Matrix was calculated and the Inverse Problem was solved using the same RStudio platform, and the Simulated Annealing Method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-64

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fick, Uber diffusion, Ann. Pys. 170 n. 1 (1855) 59–86.

Google Scholar

[2] J. Crank. The Mathematics of Diffusion, Oxford University Press, London, (1975).

Google Scholar

[3] J. Klafter, I. M. Sokolov, Anomalous diffusion spreads its wings, Physics World, 18 n. 8 (2005) 29–32.

DOI: 10.1088/2058-7058/18/8/33

Google Scholar

[4] L. VLAHOS, H. ISLIKER, Normal and anomalous diffusion: A tutorial, arXiv: 0805.0419, (2008).

Google Scholar

[5] A. McNabb, P. Foster, A new analysis of the diffusion of hydrogen in iron and ferritic steels. Transactions of the Metallurgical Society of AIME, 227 (1963) 618-627.

Google Scholar

[6] H. Atsumi, Hydrogen bulk retention in graphite and kinetics of diffusion, Journal of Nuclear Materials, 307 n.2 (2002) 1466–1470.

DOI: 10.1016/s0022-3115(02)01069-3

Google Scholar

[7] M. V. D'Angelo, E. Fontana, R. Chertcoff, M. Rosen, Retention phenomena in non-Newtonian fluids flow, Physica A: Statistical Mechanics and its Applications, 327 n. 1 (2003) 44-48.

DOI: 10.1016/s0378-4371(03)00436-9

Google Scholar

[8] D. A. Benson, The fractional advection-dispersion equation: development and applications. Ph.D. thesis, University of Nevada, USA, (1998).

Google Scholar

[9] G. Moradi, B. Mehdinejadiani, Modelling solute transport in homogeneous and heterogeneous porous media using spatial fractional advection-dispersion equation, Soil & Water Research, 13 (2018) 18-28.

DOI: 10.17221/245/2016-swr

Google Scholar

[10] J. Blackledge, Application of the fractional diffusion equation for predicting market behavior, International Journal of Applied Mathematics, 40 n. 3 (2010) 130–158.

Google Scholar

[11] O. S. Iyiola, F. D. Zaman. A fractional diffusion equation model for cancer tumor, AIP Advances, 4 n. 10 (2014) 107-121.

DOI: 10.1063/1.4898331

Google Scholar

[12] G. T. Dee, W. v. Saarloos, Bistable Systems with Propagating Fronts Leading to Pattern Formation, Physical Review Letters, 60 n. 25 (1988). doi: https://doi.org/10.1103/PhysRevLett.60.2641.

DOI: 10.1103/physrevlett.60.2641

Google Scholar

[13] T. Kadri, K. Omrani, A Fourth-order Accurate Finite Difference Scheme for the Extended Fisher-Komolgorov Equation, Bull. Korean Math. Soc. 55 n.1 (2018), 297{310. doi.org/10.4134/BKMS.b161013.

Google Scholar

[14] L. Bevilacqua, A. C. N. R. Galeão, F.P. Costa, A new analytical formulation of retention effects on particle diffusion process. An Acad Bras Cienc. 83 (2011) 1443-1464.

DOI: 10.1590/s0001-37652011005000033

Google Scholar

[15] L. Bevilacqua, A. C. N. R. Galeão, J. G. Simas, A. P. R. Doce, A new theory for anomalous diffusion with a bimodal flux distribution, J. Brazilian Soc. Mech Sci Eng. 35 n.4 (2013) 1-10.

DOI: 10.1007/s40430-013-0041-y

Google Scholar

[16] J. Lugon Jr., P. P. G. W. Rodrigues, L. Bevilacqua, D. C. Knupp, J. F. V. Vasconcellos, A. J. Silva Neto, Study of the secondary diffusion coefficient in problems of anomalous diffusion, in Proceedings of the XXXVIII Congresso Nacional de Matemática Aplicada e Computacional – CNMAC, 6 n. 2, Campinas, Brazil, 2018. (in Portuguese).

Google Scholar

[17] J. V. Beck, Combined Parameter and Function Estimation in Heat Transfer with Application to Contact Conductance, J. Heat Transfer, 110 n. 4b (1988) 1046-1058.

DOI: 10.1115/1.3250609

Google Scholar

[18] F. D. Moura Neto, A. J. Silva Neto, An Introduction to Inverse Problems with Applications, Springer-Verlag, 2012. ISBN 978-3-642-32556-4 (e-book 978-3-64232557-1).

Google Scholar

[19] A. J. Silva Neto, J. C. Becceneri, H. F. Campos Velho, (Eds.), Computational Intelligence Applied to Inverse Radiative Transfer Problems, EdUERJ, 2016. ISBN 978-85-7511-368-4. (in Portuguese).

Google Scholar

[20] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Physics, 21 (1953) 1087-1092.

DOI: 10.1063/1.1699114

Google Scholar

[21] S. Kirkpatrick, C. D. Gellat, Jr., M. P. Vecchi, Optimization by Simulated Annealing, Science, 220 (1983) 671-680.

DOI: 10.1126/science.220.4598.671

Google Scholar

[22] H. Szu, R. Hartley. Fast Simulated Annealing. Physics Letters A, 122 (1987) 157–162.

DOI: 10.1016/0375-9601(87)90796-1

Google Scholar

[23] C. Tsallis, and D. A. Stariolo. Generalized Simulated Annealing. Physics A, 233 (1996) 395–406.

Google Scholar

[24] Y. Xiang, S. Gubian, B. Suomela, J. Hoeng, Generalized Simulated Annealing for Global Optimization: The GenSA Package, The R Journal, 5 n.1. (2013) 13-28. https://journal.r-project.org/archive/2013/RJ-2013-002/RJ-2013-002.pdf.

DOI: 10.32614/rj-2013-002

Google Scholar

[25] K. J. Dowding, B. F. Blackwell, R. J. Cochran, Applications of Sensitivity Coefficients for Heat Conduction Problems, Numerical Heat Transfer, Part B, 36 (1999) 33-55.

DOI: 10.1080/104077999275767

Google Scholar

[26] J. Lugon Jr., A. J. Silva Neto, Solution of porous media inverse drying problems using a combination of stochastic and deterministic methods, J. Braz. Soc. Mech. Sci. & Eng. 33, n.4 (2011)., http://dx.doi.org/10.1590/S1678-58782011000400003.

DOI: 10.1590/s1678-58782011000400003

Google Scholar

[27] J. Lugon Jr., P. P. G. W. Rodrigues, A. J. Silva Neto. Assessment of dispersion mechanisms in rivers by means of an inverse problem approach, J. Inverse Problems in Science and Engineering, 16 n. 8 (2008). https://doi.org/10.1080/17415970802082864.

DOI: 10.1080/17415970802082864

Google Scholar

[28] L. G. Silva, D. C. Knupp, L. Bevilacqua, A. C. N. R. Galeão, A. J. Silva Neto, Inverse problem in anomalous diffusion with uncertainty propagation, Computer Assisted Methods in Engineering and Science, 21 (2014) 245–255.

DOI: 10.1007/978-3-319-96433-1_9

Google Scholar

[29] D. C. Knupp, L. G. Silva, L. Bevilacqua, A. C. N. R. Galeão, A. J. Silva Neto, Inverse Analysis of a New Anomalous Diffusion Model Employing Maximum Likelihood and Bayesian Estimation, in: A. J. Silva Neto, O. Lannes Santiago G. N. Silva, Mathematical Modeling and Computational Intelligence in Engineering Applications, Springer International Publishing, Switzerland, 2016, pp.89-104.

DOI: 10.1007/978-3-319-38869-4_7

Google Scholar

[30] L. G. Silva, D. C. Knupp, A. C. N. R. Galeão, A. J. Silva Neto, Inverse Problem of an Anomalous Diffusion Model Employing Lightning Optimization Algorithm, in: G. M. Platt, X. – S. Yang, A. J. Silva Neto. Computational Intelligence, Optimization and Inverse Problems with Applications in Engineering, Springer Nature, Switzerland, 2019, pp.185-200.

DOI: 10.1007/978-3-319-96433-1_9

Google Scholar

[31] R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). URL https://www.R-project.org/.

Google Scholar

[32] J. Lugon Jr., P. P. G. W. Rodrigues, L. Bevilacqua, G. M. Marinho, D. C. Knupp, J. F. V. Vasconcellos, A. J. Silva Neto, AdvDif4: Solving 1D Advection Bi-Flux Diffusion Equation, 2018. https://CRAN.R-project.org/package=AdvDif4.

Google Scholar

[33] J. Lugon Jr., and A. J. Silva Neto, GRIPP: General Inverse Problem Platform, 2019. https://CRAN.R-project.org/package=gripp.

Google Scholar