[1]
R. Barker, Integration des equations du movement d'un fluid visquent incompressible, Hand book of fluid Dynamics, Springer, Berlin, VIII/3, (1963).
Google Scholar
[2]
M.E. Erdoḡan, Unsteady flow of a viscous fluid due to non-coaxial rotations of a disk and a fluid at infinity, Int. J. Non-linear Mech. 32(2) (1997) 285-290.
DOI: 10.1016/s0020-7462(96)00065-0
Google Scholar
[3]
M.E. Erdogan, Flow due to eccentric rotating a porous disk and a fluid at infinity. ASME, J. Appl. Mech. 43 (1976) 203-204.
DOI: 10.1115/1.3423808
Google Scholar
[4]
M.E. Erdoǧan, Flow due to parallel disks rotating about non-coincident axis with one of them oscillating in its plane. Int. J Non-linear Mech. 34(6) (1999) 1019-1030.
DOI: 10.1016/s0020-7462(98)00072-9
Google Scholar
[5]
H.V. Ersoy, Unsteady viscous flow induced by eccentric-concentric rotation of a disk and the fluid at infinity, Turk. J. Eng. Environ. Sci. 27(2) (2003) 115-124.
Google Scholar
[6]
H.V. Ersoy, Unsteady flow produced by oscillations of eccentric rotating disks, Math. Probl. Eng. (2012).
Google Scholar
[7]
H.V. Ersoy, Periodic flow due to oscillations of eccentric rotating porous disks, Adv. Mech. Eng. 7(8) (2015).
Google Scholar
[8]
T. Hayat, S. Asghar, A.M. Siddiqui, T. Haroon, Unsteady MHD flow due to non-coaxial rotations of a porous disk and a fluid at infinity, Acta Mech. 151 (2001) 127-134.
DOI: 10.1007/bf01272530
Google Scholar
[9]
T. Hayat, M. Zamurad, S. Asghar, A.M. Siddiqui, Magnetohydrodynamic flow due to non-coaxial rotations of a porous oscillating disk and a fluid at infinity, Int. J. Eng. Sci. 41 (2003) 1177-1196.
DOI: 10.1016/s0020-7225(03)00004-1
Google Scholar
[10]
T. Hayat, R. Ellahi, S. Asghar, Unsteady periodic flows lows of a magnetohydrodynamic fluid due to noncoxial rotations of a porous disk and a fluid at infinity, Math. Comput. Model. 40 (2004) 173-179.
DOI: 10.1016/j.mcm.2003.09.035
Google Scholar
[11]
S. Asghar, K. Hanif, T. Hayat, The effect of the slip condition on unsteady flow due to non-coaxial rotations of disk and a fluid at infinity. Meccanica. 42 (2007) 141-148.
DOI: 10.1007/s11012-006-9027-5
Google Scholar
[12]
M. Guria, S. Das, R.N. Jana, Hall effects on unsteady flow of a viscous fluid due to non-coaxial rotation of a porous disk and a fluid at infinity, Int. J. Non-Linear Mech. 42 (2007) 1204-1209.
DOI: 10.1016/j.ijnonlinmec.2007.09.009
Google Scholar
[13]
S.L. Maji, N. Ghara, R.N. Jana, S. Das, Unsteady MHD flow between two eccentric rotating disks, J. Phys. Sci. 13 (2009) 87-96.
Google Scholar
[14]
M. Guria, A.K. Kanch, S. Das, R.N. Jana, Effects of Hall current and slip condition on unsteady flow of a viscous fluid due to non-coaxial rotation of a porous disk and a fluid at infinity, Meccanica. 4 (2010) 23-32.
DOI: 10.1007/s11012-009-9218-y
Google Scholar
[15]
I. Ahmad, Flow induced by non-coaxial rotations of porous disk and a fluid in a porous medium, Afr. J. Math. Comput. Sci. Res. 5 (2012) 23-27.
DOI: 10.5897/ajmcsr10.030
Google Scholar
[16]
S. Das, M. Jana, R.N. Jana, Oscillatory flow due to eccentrically rotating porous disk and a fluid at infinity embedded in a porous medium, Meccanica. 49 (2014) 147-153.
DOI: 10.1007/s11012-013-9779-7
Google Scholar
[17]
S. Das, R.N. Jana, Hall effects on unsteady hydromagnetic flow induced by an eccentric–concentric rotation of a disk and a fluid at infinity, Ain Shams Eng. J. 5 (2014) 1325-1335.
DOI: 10.1016/j.asej.2014.06.003
Google Scholar
[18]
A.Q. Mohamad, I. Khan, Z. Ismail, S. Shafie, Exact solutions for unsteady free convection flow over an oscillating plate due to non-coaxial rotation, SpringerPlus. 5(1) (2016) 1-22.
DOI: 10.1186/s40064-016-3748-2
Google Scholar
[19]
A.Q. Mohamad, I. Khan, S. Shafie, Z.M. Isa, Z. Ismail, Non-coaxial rotating flow of viscous fluid with heat and mass transfer, Neural Comput. Appl. 30(9) (2018) 2759-2769.
DOI: 10.1007/s00521-017-2854-6
Google Scholar
[20]
A.Q. Mohamad, I. Khan, L.Y. Jiann, S. Shafie, Z.M. Isa, Z. Ismail, Double convection of unsteady MHD non-coaxial rotation viscous fluid in a porous medium, B. Malays. Math. Sci. So. 41(4) (2018) 2117-2139.
DOI: 10.1007/s40840-018-0627-8
Google Scholar