[1]
S.U.S. Choi, J.A. Eastman. Enhancing thermal conductivity of fluids with nanoparticles. In Proc. Conf. on ASME International Mechanical Engineering Congress & Exposition, San Francisco, USA. (1995) 99-105.
Google Scholar
[2]
S.K. Das, S.U.S. Choi, H.E. Patel, Heat transfer in nanofluids - A review, Heat transfer engineering 27 (2006) 3-19.
DOI: 10.1080/01457630600904593
Google Scholar
[3]
Y. Li, S. Tung, E. Schneider, S. Xi, A review on development of nanofluid preparation and characterization, Powder Technology 196 (2009) 89-101.
DOI: 10.1016/j.powtec.2009.07.025
Google Scholar
[4]
S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, International Journal of Heat and Mass Transfer 52 (2009) 3187-3196.
DOI: 10.1016/j.ijheatmasstransfer.2009.02.006
Google Scholar
[5]
R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi, Small particles, big impacts: a review of the diverse applications of nanofluids, Journal of applied physics 113 (2013) 1.
DOI: 10.1063/1.4754271
Google Scholar
[6]
N.A.C. Sidik, H.A. Mohammed, O.A. Alawi, S. Samion, A review on preparation methods and challenges of nanofluids, International Communications in Heat and Mass Transfer 54 (2014) 115-125.
DOI: 10.1016/j.icheatmasstransfer.2014.03.002
Google Scholar
[7]
R.E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, New York, (1985).
Google Scholar
[8]
A.N. Darus, Analisis pemindahan haba: Olakan, Dewan Bahasa dan Pustaka, Kuala Lumpur, (1995).
Google Scholar
[9]
J.L. Neuringer, R.E. Rosensweig, Ferrohydrodynamics, The Physics of Fluids 7 (1964) 1927-1937.
DOI: 10.1063/1.1711103
Google Scholar
[10]
J.L. Neuringer, Some viscous flows of a saturated ferro-fluid under the combined influence of thermal and magnetic field gradients, International Journal of Non-Linear Mechanics 1 (1966) 123-137.
DOI: 10.1016/0020-7462(66)90025-4
Google Scholar
[11]
W. Khan, Z. Khan, R.U. Haq, Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux, The European Physical Journal Plus 130 (2015) 1-10.
DOI: 10.1140/epjp/i2015-15086-4
Google Scholar
[12]
N. Sandeep, C. Raju, C. Sulochana, V. Sugunamma, Effects of aligned magneticfield and radiation on the flow of ferrofluids over a flat plate with non-uniform heat source/sink, International Journal of Science and Engineering 8 (2015) 151-158.
Google Scholar
[13]
N. Ramli, S. Ahmad, I. Pop, Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate, AIP Conference Proceedings 1870 (2017) 040015.
DOI: 10.1063/1.4995847
Google Scholar
[14]
M.R. Ilias, N.A. Rawi, S. Shafie, MHD Free Convection Flow and Heat Transfer of Ferrofluids over a Vertical Flat Plate with Aligned and Transverse Magnetic Field, Indian Journal of Science and Technology 9 (2016) 1-7.
DOI: 10.17485/ijst/2016/v9i36/97347
Google Scholar
[15]
M.R. Ilias, N.A. Rawi, N.H. Ab Raji, S. Shafie, Unsteady aligned MHD boundary layer flow and heat transfer of magnetic nanofluid past a vertical flat plate with leading edge accretion, ARPN Journal of Engineering and Applied Sciences 13 (2018) 340-351.
DOI: 10.18178/ijmerr.9.2.197-206
Google Scholar
[16]
Z.H. Khan, W.A. Khan, M. Qasim, I.A. Shah, MHD Stagnation Point Ferrofluid Flow and Heat Transfer Toward a Stretching Sheet, IEEE Transactions on Nanotechnology 13 (2014) 35-40.
DOI: 10.1109/tnano.2013.2286991
Google Scholar
[17]
I. Mustafa, T. Javed, A. Ghaffari, Heat transfer in MHD stagnation point flow of a ferrofluid over a stretchable rotating disk, Journal of Molecular Liquids 219 (2016) 526-532.
DOI: 10.1016/j.molliq.2016.03.046
Google Scholar
[18]
Z. Abbas, M. Sheikh, Numerical study of homogeneous–heterogeneous reactions on stagnation point flow of ferrofluid with non-linear slip condition, Chinese Journal of Chemical Engineering 25 (2017) 11-17.
DOI: 10.1016/j.cjche.2016.05.019
Google Scholar
[19]
C.S.K. Raju, N. Sandeep, M. Jayachandra Babu, J.V. Ramana Reddy, Stagnation-point flow of a ferrofluid towards a stretching sheet, Journal of Nanofluids 5 (2016) 245-252.
DOI: 10.1166/jon.2016.1209
Google Scholar
[20]
J. Merkin, Natural-convection boundary-layer flow on a vertical surface with Newtonian heating, International Journal of Heat and Fluid Flow 15 (1994) 392-398.
DOI: 10.1016/0142-727x(94)90053-1
Google Scholar
[21]
E. Blums, Heat and mass transfer phenomena, in: S. Odenbach (Eds.), Ferrofluids: Magnetically Controllable Fluids and Their Applications, Springer Berlin, 2002, pp.124-139.
Google Scholar
[22]
R.K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, International Journal of Heat and Mass Transfer 50 (2007) 2002-2018.
DOI: 10.1016/j.ijheatmasstransfer.2006.09.034
Google Scholar
[23]
S.H.M. Yasin, M.K.A. Mohamed, Z. Ismail, B. Widodo, M.Z. Salleh, Numerical Solution on MHD Stagnation Point Flow in Ferrofluid with Newtonian Heating and Thermal Radiation Effect, CFD Lettters 11 (2019) 21-31.
DOI: 10.1088/1742-6596/1366/1/012008
Google Scholar
[24]
S.S. Molokov, R. Moreau, H.K. Moffatt, Magnetohydrodynamics: Historical evolution and trends, Vol. 80, Springer Science & Business Media, (2007).
Google Scholar
[25]
S. Hussain, S.E. Ahmed, Unsteady MHD forced convection over a backward facing step including a rotating cylinder utilizing Fe3O4-water ferrofluid, Journal of Magnetism and Magnetic Materials 484 (2019) 356-366.
DOI: 10.1016/j.jmmm.2019.04.040
Google Scholar
[26]
M.K.A. Mohamed, M.I. Anwar, S. Shafie, M.Z. Salleh, A. Ishak. Effects of Magnetohydrodynamic on the Stagnation Point Flow past a Stretching Sheet in the Presence of Thermal Radiation with Newtonian Heating. In Proc. Conf. on International Conference on Mathematical Sciences and Statistics 2013, (2014) 155-163.
DOI: 10.1007/978-981-4585-33-0_16
Google Scholar
[27]
N. Bachok, A. Ishak, I. Pop, Stagnation-point flow over a stretching/shrinking sheet in a nanofluid, Nanoscale Research Letters 6 (2011) 623-632.
DOI: 10.1186/1556-276x-6-623
Google Scholar
[28]
M. Turkyilmazoglu, Unsteady convection flow of some nanofluids past a moving vertical flat plate with heat transfer, Journal of heat transfer 136 (2014) 031704.
DOI: 10.1115/1.4025730
Google Scholar
[29]
H. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of chemical physics 20 (1952) 571-571.
DOI: 10.1063/1.1700493
Google Scholar
[30]
J.C. Maxwell, A treatise on Electricity and Magnetism Clarendon Press Oxford, 1873.
Google Scholar
[31]
T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Springer, New York, (1988).
Google Scholar
[32]
T.Y. Na, Computational Method in Engineering Boundary Value Problems, Academic Press, New York, (1979).
Google Scholar
[33]
M.K.A. Mohamed, M.Z. Salleh, R. Nazar, A. Ishak, Stagnation point flow over a stretching sheet with Newtonian heating, Sains Malaysiana 41 (2012) 1467-1473.
Google Scholar
[34]
N.S. Gibanov, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid, International Journal of Heat and Mass Transfer 114 (2017) 1086-1097.
DOI: 10.1016/j.ijheatmasstransfer.2017.07.001
Google Scholar
[35]
M. Sheikholeslami, M.M. Rashidi, Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluid, Journal of the Taiwan Institute of Chemical Engineers 56 (2015) 6-15.
DOI: 10.1016/j.jtice.2015.03.035
Google Scholar
[36]
D. Toghraie, S.M. Alempour, M. Afrand, Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems, Journal of Magnetism and Magnetic Materials 417 (2016) 243-248.
DOI: 10.1016/j.jmmm.2016.05.092
Google Scholar
[37]
A. Malekzadeh, A. Pouranfard, N. Hatami, A.K. Banari, M. Rahimi, Experimental Investigations on the Viscosity of Magnetic Nanofluids under the Influence of Temperature, Volume Fractions of Nanoparticles and External Magnetic Field, Journal of Applied Fluid Mechanics 9 (2016).
DOI: 10.18869/acadpub.jafm.68.225.24022
Google Scholar
[38]
H. Haiza, I. Yaacob, A.Z.A. Azhar, Thermal Conductivity of Water Based Magnetite Ferrofluids at Different Temperature for Heat Transfer Applications, Solid State Phenomena 280 (2018) 36-42.
DOI: 10.4028/www.scientific.net/ssp.280.36
Google Scholar
[39]
B. Ghosh, M. Poshtan, Investigating the Lorentz Force Effect in Reducing Calcite Scaling in Pipe Flow, International Journal of Electronic and Electrical Engineering 6 (2013) 87-98.
Google Scholar