Microstructural Characterization of Ledeburitic Tool Steel after Sub-Zero Treatment and Tempering

Article Preview

Abstract:

Microstructural characterization of ledeburitic tool steel Vanadis 6 after sub-zero treatment and tempering has been examined. The samples were heat treated using following schedules: heating to the austenitizing temperature (TA = 1050 °C) in a vacuum furnace, hold at the final temperature for 30 min. and nitrogen gas quenching (5 bar). The sub-zero treatments consisted of immediate (after quenching) immersion of the material into the liquid helium (-269 °C), hold at the soaking temperature and removal the samples to be heated to a room temperature. Double tempering has been performed at the temperatures from the range 170 – 530 °C, whereas each tempering cycle was realized with a hold of 2 h. Typical heat treated microstructure of ledeburitic steels consists, besides of the martensitic matrix with certain amount of retained austenite, of several types of carbides – eutectic, secondary and small globular carbides. In sub-zero treated steel the amount of retained austenite is significantly reduced. The population density of small globular carbides increase as a result of sub-zero treating. Tempering of the material resulted in decrease in population density of small globular carbides with increasing the tempering temperature. The hardness of sub-zero treated material is higher than that of conventionally quenched one. Also, this tendency is preserved when the steel is low-temperature tempered. On the other hand, the hardness of conventionally quenched steel becomes higher than that of SZT one when tempered at the temperature of secondary hardening.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-109

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Jurči, M. Dománková, L. Čaplovič, J. Ptačinová, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, D. Jenko, Microstructure and hardness of sub-zero treated and no tempered P/M Vanadis 6 ledeburitic tool steel. Vacuum, 2015, 111, p.92 – 101,.

DOI: 10.1016/j.vacuum.2014.10.004

Google Scholar

[2] P. Jurči, Structural changes in Cr-V ledeburitic steel during austenitizing and quenching. Materials Engineering, Vol. 17, 2010, No. 1.

Google Scholar

[3] D. Das, A.K. Dutta, K.K. Ray, Sub-zero treatments of AISI D2 steel: Part II. Wear behaviour. Mater. Sci. Engng. 2010, A527, 2194 – 2206,.

DOI: 10.1016/j.msea.2009.10.071

Google Scholar

[4] P.F. Stratton, Optimising nano-carbide precipitation in tool steels. Mater. Sci. Engng. 2007, A449-451, 809 – 812,.

DOI: 10.1016/j.msea.2006.01.162

Google Scholar

[5] D. Mohan Lal, S. Renganarayanan, A. Kalanihidi, Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics 2001, 41, 149 – 155,.

DOI: 10.1016/s0011-2275(01)00065-0

Google Scholar

[6] K. Amini, A. Akhbarizadeh, S. Javadpour, Investigating the effect of the quench environment on the final microstructure and wear behaviour of 1.2080 tool steel after deep cryogenic heat treatment. Mater. Design 2013, 45, 316 – 322,.

DOI: 10.1016/j.matdes.2012.08.006

Google Scholar

[7] A. Akhbarizadeh, K. Amini, S. Javadpour, Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behaviour of 1.2080 tool steel. Mater. Design 2012, 41, 114 – 123,.

DOI: 10.1016/j.matdes.2012.03.045

Google Scholar

[8] K. Amini, A. Akhbarizadeh, A., Javadpour, S.: Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic treatment. Vacuum 2012, 86, 1534 – 1540,.

DOI: 10.1016/j.vacuum.2012.02.013

Google Scholar

[9] J. Ptačinová, V. Sedlická, M. Hudáková, I. Dlouhý, P. Jurči, Microstructure - Toughness relationships in sub-zero treated and tempered Vanadis 6 steel compared to conventional treatment. Materials science and engineering. Section A. Structural materials. Properties, microstructure and processing. Vol. 702, 15. august (2017), s. 241-258. ISSN 0921-5093,.

DOI: 10.1016/j.msea.2017.07.007

Google Scholar

[10] J. Sobotová, P. Jurči, I. Dlouhý, The effect of subzero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel, Mater. Sci. Engng., A652 (2016) 192 – 204,.

DOI: 10.1016/j.msea.2015.11.078

Google Scholar

[11] H. Berns, Restaustenit in ledeburitischen Chromstählen und seine Umwandlung durch Kaltumformen, Tiefkühlen und Anlassen. HTM 1974, 29 (4), 236 – 247.

DOI: 10.1515/htm-1974-290402

Google Scholar

[12] M. Pellizzari, A. Molinari, Deep Cryogenic Treatment of Cold Work Tool Steel. In: Proc. of the 6th Int. Tooling Conf., Karlstad, Sweden. September 10 – 13, 2002, Eds. J. Bergstrom, G. Fredriksson, M. Johansson, O. Kotik, F. Thuvander. Karlstad University, 547 - 558.

Google Scholar

[13] P. Jurči, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, D. Jenko, Subzero treatment of P/M Vanadis 6 ledeburitic tool steel. Int. Heat Treatment and Surf. Engng. 2013, 7, 125 – 128,.

DOI: 10.1179/1749514813z.00000000073

Google Scholar

[14] A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumov, A.P. Skoblik, V.A. Sirosh, J.N. Petrov, V.G. Gavriljuk, Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel. Mater. Sci. Engng. 2010, A527, 7027 – 7039,.

DOI: 10.1016/j.msea.2010.07.056

Google Scholar

[15] D.N. Collins, J. Dormer, Deep Cryogenic Treatment of a D2 Cold-Work Tool Steel. Heat Treatment of Metals 1997, 24, 71 - 74.

DOI: 10.1179/174951508x446376

Google Scholar

[16] V.G. Gavriljuk, W. Theisen, V.A. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Yu. N. Petrov, Y.V. Tarusin, Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater. 2013, 61, 1705 – 1715,.

DOI: 10.1016/j.actamat.2012.11.045

Google Scholar

[17] D. Das, K.K. Ray, Structure-property correlation of sub-zero treated AISI D2 steel. Mater. Sci. Engng. 2012, A541, 45 – 60,.

DOI: 10.1016/j.msea.2012.01.130

Google Scholar

[18] W. Reitz, J. Pendray, Cryoprocessing of Materials: A Review of Current Status. Materials and Manufacturing Processes. 2001. vol. 16, p.829 – 840,.

DOI: 10.1081/amp-100108702

Google Scholar

[19] Z. Zurecki, Cryogenic Quenching of Steel Revisited. In: Proc. 23rd Heat Treating Society Conference. Pittsburgh, PA, USA. 2005. p.106 – 114.

Google Scholar

[20] P. Stratton, M. Graf, The effect of deep cold induced nano-carbides on the wear of case hardened components. Cryogenics. 2009. vol. 49, p.346 – 349,.

DOI: 10.1016/j.cryogenics.2009.03.007

Google Scholar

[21] ASTM E975-13: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, In: ASTM Book of Standards, vol. 3.01, West Conshohocken, PA, USA, (2004).

DOI: 10.1520/e0975-03r08

Google Scholar

[22] P. Bílek, J. Sobotová, P. Jurči, Materiali in Tehnologije/Materials and Technology, 44 (2011) 33.

Google Scholar