Heat Treatment of High-Strength 3D-Printed Maraging Steel

Article Preview

Abstract:

Maraging steels are interesting for research after heat treatment, from which name is derived "maraging" – martensite-aging. After solution annealing and precipitation hardening the X3NiMoCoTi 18-9-5 alloy has excellent mechanical properties (tensile strength reaches up to 2000 MPa and hardness is 50-55 HRC), it is ductile and well weldable. The advantage of these materials is the possibility to be manufactured not only by conventional methods but also by modern additive manufacturing (AM) methods. One of which is selective laser melting (SLM). In this paper, the influence of heat treatment on the final microstructure and mechanical properties of the 3D-printed X3NiMoCoTi 18-9-5 maraging steel is investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-73

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Additive manufacturing and its societal impact: a literature review, The International Journal of Advanced Manufacturing Technology, 67 (2012) 1191-1203.

DOI: 10.1007/s00170-012-4558-5

Google Scholar

[2] M.G. Rashed, M. Ashraf, R.A.W. Mines, P.J. Hazell, Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications, Materials & Design, 95 (2016) 518-533.

DOI: 10.1016/j.matdes.2016.01.146

Google Scholar

[3] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, P.D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering, Computer-Aided Design, 69 (2015) 65-89.

DOI: 10.1016/j.cad.2015.04.001

Google Scholar

[4] L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, et al., Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science. J. Mater. Res. Technol. 2012, 1(1), 42-54.

DOI: 10.1016/s2238-7854(12)70009-1

Google Scholar

[5] M. Badrossamay, T.H.C. Childs, Further studies in selective laser melting of stainless and tool steel powders Inter J Mach. Tools Manuf. 47 (2007), 779-784.

DOI: 10.1016/j.ijmachtools.2006.09.013

Google Scholar

[6] I. Tolosa, F. Garciandía, F. Zubiri, F. Zapirain, A. Esnaola, Study of mechanical properties of AISI 316 stainless steel processed by selective laser melting,, following different manufacturing strategies Int. J. Adv. Manuf. Tech. 51 (2010), 639-647.

DOI: 10.1007/s00170-010-2631-5

Google Scholar

[7] T. LeBrun, T. Nakamoto, K. Horikawa, H. Kobayashi, Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel, Mater. Des. 81 (2015), 44-53.

DOI: 10.1016/j.matdes.2015.05.026

Google Scholar

[8] H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Manufacture by selective laser melting and mechanical behavior of commercially pure titanium, Mater. Sci. Eng. A, 593 (2014), 170-177.

DOI: 10.1016/j.msea.2013.11.038

Google Scholar

[9] L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, R.B. Wicker, Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V Mater. Charact. 60 (2) (2009), 96-105.

DOI: 10.1016/j.matchar.2008.07.006

Google Scholar

[10] C. Brice, R. Shenoy, M. Kral, K. Buchannan, Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing, Mater. Sci. Eng. A, 648 (2015), 9-14.

DOI: 10.1016/j.msea.2015.08.088

Google Scholar

[11] W.E. Frazier, Metal Additive Manufacturing: A Review, Journal of Materials Engineering and Performance, 23 (2014) 1917-1928.

Google Scholar

[12] S.A. Khairallah, A.T. Anderson, A. Rubencluk, W.E. King, Acta Mater. 108 (2016) 36-42.

Google Scholar

[13] R. Casati, J. Lemke, M. Vedani, Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting. J. Mater. Sci. Technol. (2016).

DOI: 10.1016/j.jmst.2016.06.016

Google Scholar

[14] K. Kempen, E. Yasa, L. Thijs, et al., Microstructure and mechanical properties of selective laser melted 18Ni-300 steel, Phys. Procedia 12 (2011) 255-263.

DOI: 10.1016/j.phpro.2011.03.033

Google Scholar

[15] C. Tan, K. Zhou, X. Tong, et al., Microstructure and mechanical properties of 18Ni- 300 maraging steel fabricated by selective laser melting. 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016), Atlantis Press, (2017).

DOI: 10.2991/icadme-16.2016.66

Google Scholar

[16] R. Tewari, S. Mazumder, S.I. Batra, G.K. Dey, S. Banerjee, Precipitation in 18 wt% Ni maraging steel of grade 350, Acta mater. 48 (2000) 1187-1200.

DOI: 10.1016/s1359-6454(99)00370-5

Google Scholar

[17] X. Xu, S. Ganguly, J. Ding, et al., Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process, Mater. Char. 143 (2018) 152-162.

DOI: 10.1016/j.matchar.2017.12.002

Google Scholar

[18] M. Rombouts, J.P. Kruth, L. Froyen, et al., Fundamentals of selective laser melting of alloyed steel powders, CIRP Ann. - Manuf. Technol. 55 (1) (2006) 187-192.

DOI: 10.1016/s0007-8506(07)60395-3

Google Scholar

[19] C.R. Shamantha, R. Narayanan, K.J.L. Iyer, et al., Microstructural changes during welding and subsequent heat treatment of 18Ni (250-grade) maraging steel, Mater. Sci. Eng. A 287 (1) (2000) 43-51.

DOI: 10.1016/s0921-5093(00)00838-8

Google Scholar

[20] F.F. Conde, J.D. Escobar, J.P. Oliveira, M. Béreš, A.L. Jardini, W.W. Bose, J.A. Avila, Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel, Mater. Sci. Eng. A. 15 (2019).

DOI: 10.1016/j.msea.2019.03.129

Google Scholar

[21] E.A. Jägle, Z. Sheng, P. Kürnsteiner, S. Ocylok, A. Weisheit, D. Raabe, Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing. Materials 2017,10, 8.

DOI: 10.3390/ma10010008

Google Scholar

[22] Y. Bai, D. Wang, Y. Yang, H. Wang, Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Mater. Sci. Eng. 2019, 760, 105-117.

DOI: 10.1016/j.msea.2019.05.115

Google Scholar

[23] A. Strakosova, J. Kubásek, A. Michalcová, F. Průša, D. Vojtěch, D. Dvorský, High strength X3NiCoMoTi 18-9-5 maraging steel prepared by selective laser melting from atomized powder. Materials 2019, 12.

DOI: 10.3390/ma12244174

Google Scholar

[24] Y. Yao, Y. Huang, B. Chen, C. Tan, Y. Su, & J. Feng, Influence of processing parameters and heat treatment on the mechanical properties of 18Ni300 manufactured by laser based directed energy deposition. Optics & Laser Technology 105 (2018) 171-179.

DOI: 10.1016/j.optlastec.2018.03.011

Google Scholar