[1]
S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Additive manufacturing and its societal impact: a literature review, The International Journal of Advanced Manufacturing Technology, 67 (2012) 1191-1203.
DOI: 10.1007/s00170-012-4558-5
Google Scholar
[2]
M.G. Rashed, M. Ashraf, R.A.W. Mines, P.J. Hazell, Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications, Materials & Design, 95 (2016) 518-533.
DOI: 10.1016/j.matdes.2016.01.146
Google Scholar
[3]
W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, P.D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering, Computer-Aided Design, 69 (2015) 65-89.
DOI: 10.1016/j.cad.2015.04.001
Google Scholar
[4]
L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, et al., Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science. J. Mater. Res. Technol. 2012, 1(1), 42-54.
DOI: 10.1016/s2238-7854(12)70009-1
Google Scholar
[5]
M. Badrossamay, T.H.C. Childs, Further studies in selective laser melting of stainless and tool steel powders Inter J Mach. Tools Manuf. 47 (2007), 779-784.
DOI: 10.1016/j.ijmachtools.2006.09.013
Google Scholar
[6]
I. Tolosa, F. Garciandía, F. Zubiri, F. Zapirain, A. Esnaola, Study of mechanical properties of AISI 316 stainless steel processed by selective laser melting,, following different manufacturing strategies Int. J. Adv. Manuf. Tech. 51 (2010), 639-647.
DOI: 10.1007/s00170-010-2631-5
Google Scholar
[7]
T. LeBrun, T. Nakamoto, K. Horikawa, H. Kobayashi, Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel, Mater. Des. 81 (2015), 44-53.
DOI: 10.1016/j.matdes.2015.05.026
Google Scholar
[8]
H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Manufacture by selective laser melting and mechanical behavior of commercially pure titanium, Mater. Sci. Eng. A, 593 (2014), 170-177.
DOI: 10.1016/j.msea.2013.11.038
Google Scholar
[9]
L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, R.B. Wicker, Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V Mater. Charact. 60 (2) (2009), 96-105.
DOI: 10.1016/j.matchar.2008.07.006
Google Scholar
[10]
C. Brice, R. Shenoy, M. Kral, K. Buchannan, Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing, Mater. Sci. Eng. A, 648 (2015), 9-14.
DOI: 10.1016/j.msea.2015.08.088
Google Scholar
[11]
W.E. Frazier, Metal Additive Manufacturing: A Review, Journal of Materials Engineering and Performance, 23 (2014) 1917-1928.
Google Scholar
[12]
S.A. Khairallah, A.T. Anderson, A. Rubencluk, W.E. King, Acta Mater. 108 (2016) 36-42.
Google Scholar
[13]
R. Casati, J. Lemke, M. Vedani, Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting. J. Mater. Sci. Technol. (2016).
DOI: 10.1016/j.jmst.2016.06.016
Google Scholar
[14]
K. Kempen, E. Yasa, L. Thijs, et al., Microstructure and mechanical properties of selective laser melted 18Ni-300 steel, Phys. Procedia 12 (2011) 255-263.
DOI: 10.1016/j.phpro.2011.03.033
Google Scholar
[15]
C. Tan, K. Zhou, X. Tong, et al., Microstructure and mechanical properties of 18Ni- 300 maraging steel fabricated by selective laser melting. 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016), Atlantis Press, (2017).
DOI: 10.2991/icadme-16.2016.66
Google Scholar
[16]
R. Tewari, S. Mazumder, S.I. Batra, G.K. Dey, S. Banerjee, Precipitation in 18 wt% Ni maraging steel of grade 350, Acta mater. 48 (2000) 1187-1200.
DOI: 10.1016/s1359-6454(99)00370-5
Google Scholar
[17]
X. Xu, S. Ganguly, J. Ding, et al., Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process, Mater. Char. 143 (2018) 152-162.
DOI: 10.1016/j.matchar.2017.12.002
Google Scholar
[18]
M. Rombouts, J.P. Kruth, L. Froyen, et al., Fundamentals of selective laser melting of alloyed steel powders, CIRP Ann. - Manuf. Technol. 55 (1) (2006) 187-192.
DOI: 10.1016/s0007-8506(07)60395-3
Google Scholar
[19]
C.R. Shamantha, R. Narayanan, K.J.L. Iyer, et al., Microstructural changes during welding and subsequent heat treatment of 18Ni (250-grade) maraging steel, Mater. Sci. Eng. A 287 (1) (2000) 43-51.
DOI: 10.1016/s0921-5093(00)00838-8
Google Scholar
[20]
F.F. Conde, J.D. Escobar, J.P. Oliveira, M. Béreš, A.L. Jardini, W.W. Bose, J.A. Avila, Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel, Mater. Sci. Eng. A. 15 (2019).
DOI: 10.1016/j.msea.2019.03.129
Google Scholar
[21]
E.A. Jägle, Z. Sheng, P. Kürnsteiner, S. Ocylok, A. Weisheit, D. Raabe, Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing. Materials 2017,10, 8.
DOI: 10.3390/ma10010008
Google Scholar
[22]
Y. Bai, D. Wang, Y. Yang, H. Wang, Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Mater. Sci. Eng. 2019, 760, 105-117.
DOI: 10.1016/j.msea.2019.05.115
Google Scholar
[23]
A. Strakosova, J. Kubásek, A. Michalcová, F. Průša, D. Vojtěch, D. Dvorský, High strength X3NiCoMoTi 18-9-5 maraging steel prepared by selective laser melting from atomized powder. Materials 2019, 12.
DOI: 10.3390/ma12244174
Google Scholar
[24]
Y. Yao, Y. Huang, B. Chen, C. Tan, Y. Su, & J. Feng, Influence of processing parameters and heat treatment on the mechanical properties of 18Ni300 manufactured by laser based directed energy deposition. Optics & Laser Technology 105 (2018) 171-179.
DOI: 10.1016/j.optlastec.2018.03.011
Google Scholar