Formation of Microstructure during Sub-Zero Treatments of Chromium and Chromium-Vanadium Ledeburitic Steels

Article Preview

Abstract:

Despite the fact that the sub-zero treatment has widely been employed in various industrial branches more than 100 years, metallurgical principles of microstructural alterations was discovered only over past several years. Many experimental works have been done in order to describe what happens in the microstructures of various steels when they are subjected to the treatment within a temperature range 4 - 273 K and for different durations of this treatment. The obtained results infer that the changes in microstructure and thus in mechanical properties depend not only on the treatment regime used, but they are closely related to the steel chemistry. The current paper summarizes the findings obtained by sub-zero treatments of two different ledeburitic tool steels (AISI D2 and Vanadis 6). The changes in retained austenite characteristics, alterations in martensitic structures, variations in carbide characteristics and modifications in precipitation behaviour are demonstrated and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-36

Citation:

Online since:

September 2020

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.P. Sweeney, Deep cryogenics: the great cold debate, Heat Treating, 2 (1986), 28 – 33.

Google Scholar

[2] W. Reitz, J. Pendray, Cryoprocessing of Materials: A Review of Current Status, Mater. Manuf. Processes, 16 (2001) 829 – 840.

DOI: 10.1081/amp-100108702

Google Scholar

[3] P.F. Stratton, Optimising nano-carbide precipitation in tool steels, Mater. Sci. Eng., A449-451 (2007) 809 – 812.

DOI: 10.1016/j.msea.2006.01.162

Google Scholar

[4] Z. Zurecki, Cryogenic Quenching of Steel Revisited, In: Proc. 23rd Heat Treating Society Conference, Pittsburgh, PA, USA, 2005, eds. Herring, D., Hill, R. 106 – 114.

Google Scholar

[5] Sverker 21 Cold work tool steel. www.uddeholm.com.

Google Scholar

[6] H. Berns, Restaustenit in ledeburitischen Chromstählen und seine Umwandlung durch Kaltumformen, Tiefkühlen und Anlassen, HTM J. Heat Treat. Mater., 29 (1974), 236–247.

DOI: 10.1515/htm-1974-290402

Google Scholar

[7] V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Yu.N. Petrov, Y.V. Tarusin, Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment, Acta Mater., 61 (2013), 1705 – 1715.

DOI: 10.1016/j.actamat.2012.11.045

Google Scholar

[8] D. Das, A.K. Dutta, K.K. Ray, Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Mater. Sci. Eng., A527 (2010), 2182 – 2193.

DOI: 10.1016/j.msea.2009.10.070

Google Scholar

[9] D. Das, A.K. Dutta, K.K. Ray, Influence of varied cryotreatment on the wear behaviour of AISI D2 steel, Wear, 266 (2009), 297 – 309.

DOI: 10.1016/j.wear.2008.07.001

Google Scholar

[10] K. Amini, A. Akhbarizadeh, S. Javadpour, Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behaviour of D2 tool steel, Int. J. Miner. Metall. Mater., 19 (2012), 795 – 799.

DOI: 10.1007/s12613-012-0630-2

Google Scholar

[11] F. Meng, K. Tagashira, R. Azuma, H. Sohma, Role of Eta-carbide Precipitation´s in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment, ISIJ Int., 34 (1994), 205 - 210.

DOI: 10.2355/isijinternational.34.205

Google Scholar

[12] C.H. Surberg, P. Stratton, K. Lingenhöle, The effect of some heat treatment parameters on the dimensional stability of AISI D2, Cryogenics, 48 (2008), 42 – 47.

DOI: 10.1016/j.cryogenics.2007.10.002

Google Scholar

[13] V.G. Gavriljuk, V.V. Sirosh, Yu.N. Petrov, A.I. Tyshchenko, W. Theisen, A. Kortmann, Carbide precipitation during tempering of a tool steel subjected to deep cryogenic treatment, Metall. Mater. Trans. A, 45 (2014), 2453 – 2465.

DOI: 10.1007/s11661-014-2202-8

Google Scholar

[14] J. Pietikainen, Effects of the aging of martensite on its deformation characteristics and on fracture in Fe – Ni – Si – C steel, J. Iron Steel Inst. 1 (1968), 74 – 78.

Google Scholar

[15] D.N. Collins, J. Dormer, Deep Cryogenic Treatment of a D2 Cold-Work Tool Steel, Heat Treat. Met., 24 (1997), 71 - 74.

Google Scholar

[16] D.N. Collins, Deep cryogenic treatment of tool steels - a review, Heat Treat. Met., 2 (1996), 40 – 42.

Google Scholar

[17] D.N. Collins, Cryogenic treatment of tool steels, Adv. Mater. Process., 12 (1998), 24 – 29.

Google Scholar

[18] P. Jurči, M. Dománková, L. Čaplovič, J. Ptačinová, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, D. Jenko, Microstructure and hardness of sub-zero treated and no tempered P/M Vanadis 6 ledeburitic tool steel, Vacuum, 111 (2015), 92 – 101.

DOI: 10.1016/j.vacuum.2014.10.004

Google Scholar

[19] D. Das, K.K. Ray, Structure-property correlation of subzero treated AISI D2 steel. Mater. Sci. Eng., A541 (2012), 45 – 60.

Google Scholar

[20] M. Nemec, P. Jurči, P. Kosnáčová, M. Kučerová, Evaluation of structural isotropy of Cr-V ledeburitic steel made by powder metallurgy of rapidly solidified particles, Kovove Mater. 54 (2016), 453 – 462.

DOI: 10.4149/km_2016_6_453

Google Scholar

[21] S. Morito, J. Nishikawa, T. Maki, Dislocation Density within Lath Martensite in Fe-C and Fe-Ni Alloys, ISIJ Int., 43 (2003), 1475 – 1477.

DOI: 10.2355/isijinternational.43.1475

Google Scholar

[22] J. Ďurica, J. Ptačinová, M. Dománková, L. Čaplovič, M. Čaplovičová, L. Hrušovská, V. Malovcová, P. Jurči, Changes in microstructure of ledeburitic tool steel due to vacuum austenitizing and quenching, sub-zero treatments at −140°C and tempering, Vacuum 170 (2019), doi: https://doi.org/10.1016/j.vacuum.2019.108977.

DOI: 10.1016/j.vacuum.2019.108977

Google Scholar

[23] P. Jurči, M. Dománková, M. Hudáková, J. Ptačinová, M. Pašák, P. Palček, Characterization of microstructure and tempering response of conventionally quenched, short- and long-time sub-zero treated PM Vanadis 6 ledeburitic tool steel, Mater. Charact., 134 (2017), 398 – 415.

DOI: 10.1016/j.matchar.2017.10.029

Google Scholar

[24] G.T. Eldis, M. Cohen, Strength of initially virgin martensite at -196 °C after aging and tempering. Metall. Trans., 14A (1983), 1007 – 1012.

DOI: 10.1007/bf02659848

Google Scholar

[25] M.J. Van Genderen, A. Boettger, R.J. Cernik, E.J. Mittemeijer, Early Stages of Decomposition in Iron-Carbon and Iron-Nitrogen Martensites: Diffraction Analysis Using Synchrotron Radiation. Metall. Trans., 24A (1993), 1965 – (1973).

DOI: 10.1007/bf02666331

Google Scholar

[26] M. Villa, M.F. Hansen, M.A.J. Somers, Martensite formation in Fe-C alloys at cryogenic temperatures, Scr. Mater. 141 (2017) 129–132.

DOI: 10.1016/j.scriptamat.2017.08.005

Google Scholar

[27] A.J. McEvily, R.C. Ku, T.L. Johnston, The source of martensite strength, Trans. Metall. Soc. AIME, 236 (1966), 108 – 114.

Google Scholar

[28] J. Pietikainen, Effects of the aging of martensite on its deformation characteristics and on fracture in Fe – Ni – Si – C steel, Journal of the Iron and Steel Institute, 1 (1968), 74 – 78.

Google Scholar

[29] M. Pašák, Study of the phase transformations kinetics in high alloy systems based on iron. PhD Thesis. Trnava: Faculty of Materials and Technology, Trnava, (2015).

Google Scholar

[30] H. K. D. H. Bhadeshia, Cementite, International Mater. Rev., 2019,.

Google Scholar

[31] M. Umemoto, Y. Todaka, K. Tsuchiya, Mechanical properties of cementite and fabrication of artificial pearlite, Mater. Sci. Forum, 426-432 (2003), 859 – 864.

DOI: 10.4028/www.scientific.net/msf.426-432.859

Google Scholar

[32] L.E. Kar´kina, T.A. Zubkova, I.L. Yakovleva, Dislocation Structure of Cementite in Granular Pearlite after Cold Plastic Deformation, The Physics of Metals and Metallography 114 (2013), 234 – 241.

DOI: 10.1134/s0031918x13030095

Google Scholar

[33] S. Li, N. Min, J. Li, X. Wu, Ch. Li, L. Tang, Experimental verification of segregation of carbon and precipitation of carbides due to deep cryogenic treatment for tool steel by internal friction method, Mater. Sci. Eng., A575 (2013), 51 – 60.

DOI: 10.1016/j.msea.2013.03.070

Google Scholar

[34] P. Jurči, Sub-Zero Treatment of Cold Work Tool Steels – Metallurgical Background and the Effect on Microstructure and Properties, HTM J. Heat Treat. Mater., 72 (2017), 62 – 68.

DOI: 10.3139/105.110301

Google Scholar