[1]
T.P. Sweeney, Deep cryogenics: the great cold debate, Heat Treating, 2 (1986), 28 – 33.
Google Scholar
[2]
W. Reitz, J. Pendray, Cryoprocessing of Materials: A Review of Current Status, Mater. Manuf. Processes, 16 (2001) 829 – 840.
DOI: 10.1081/amp-100108702
Google Scholar
[3]
P.F. Stratton, Optimising nano-carbide precipitation in tool steels, Mater. Sci. Eng., A449-451 (2007) 809 – 812.
DOI: 10.1016/j.msea.2006.01.162
Google Scholar
[4]
Z. Zurecki, Cryogenic Quenching of Steel Revisited, In: Proc. 23rd Heat Treating Society Conference, Pittsburgh, PA, USA, 2005, eds. Herring, D., Hill, R. 106 – 114.
Google Scholar
[5]
Sverker 21 Cold work tool steel. www.uddeholm.com.
Google Scholar
[6]
H. Berns, Restaustenit in ledeburitischen Chromstählen und seine Umwandlung durch Kaltumformen, Tiefkühlen und Anlassen, HTM J. Heat Treat. Mater., 29 (1974), 236–247.
DOI: 10.1515/htm-1974-290402
Google Scholar
[7]
V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Yu.N. Petrov, Y.V. Tarusin, Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment, Acta Mater., 61 (2013), 1705 – 1715.
DOI: 10.1016/j.actamat.2012.11.045
Google Scholar
[8]
D. Das, A.K. Dutta, K.K. Ray, Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Mater. Sci. Eng., A527 (2010), 2182 – 2193.
DOI: 10.1016/j.msea.2009.10.070
Google Scholar
[9]
D. Das, A.K. Dutta, K.K. Ray, Influence of varied cryotreatment on the wear behaviour of AISI D2 steel, Wear, 266 (2009), 297 – 309.
DOI: 10.1016/j.wear.2008.07.001
Google Scholar
[10]
K. Amini, A. Akhbarizadeh, S. Javadpour, Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behaviour of D2 tool steel, Int. J. Miner. Metall. Mater., 19 (2012), 795 – 799.
DOI: 10.1007/s12613-012-0630-2
Google Scholar
[11]
F. Meng, K. Tagashira, R. Azuma, H. Sohma, Role of Eta-carbide Precipitation´s in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment, ISIJ Int., 34 (1994), 205 - 210.
DOI: 10.2355/isijinternational.34.205
Google Scholar
[12]
C.H. Surberg, P. Stratton, K. Lingenhöle, The effect of some heat treatment parameters on the dimensional stability of AISI D2, Cryogenics, 48 (2008), 42 – 47.
DOI: 10.1016/j.cryogenics.2007.10.002
Google Scholar
[13]
V.G. Gavriljuk, V.V. Sirosh, Yu.N. Petrov, A.I. Tyshchenko, W. Theisen, A. Kortmann, Carbide precipitation during tempering of a tool steel subjected to deep cryogenic treatment, Metall. Mater. Trans. A, 45 (2014), 2453 – 2465.
DOI: 10.1007/s11661-014-2202-8
Google Scholar
[14]
J. Pietikainen, Effects of the aging of martensite on its deformation characteristics and on fracture in Fe – Ni – Si – C steel, J. Iron Steel Inst. 1 (1968), 74 – 78.
Google Scholar
[15]
D.N. Collins, J. Dormer, Deep Cryogenic Treatment of a D2 Cold-Work Tool Steel, Heat Treat. Met., 24 (1997), 71 - 74.
Google Scholar
[16]
D.N. Collins, Deep cryogenic treatment of tool steels - a review, Heat Treat. Met., 2 (1996), 40 – 42.
Google Scholar
[17]
D.N. Collins, Cryogenic treatment of tool steels, Adv. Mater. Process., 12 (1998), 24 – 29.
Google Scholar
[18]
P. Jurči, M. Dománková, L. Čaplovič, J. Ptačinová, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, D. Jenko, Microstructure and hardness of sub-zero treated and no tempered P/M Vanadis 6 ledeburitic tool steel, Vacuum, 111 (2015), 92 – 101.
DOI: 10.1016/j.vacuum.2014.10.004
Google Scholar
[19]
D. Das, K.K. Ray, Structure-property correlation of subzero treated AISI D2 steel. Mater. Sci. Eng., A541 (2012), 45 – 60.
Google Scholar
[20]
M. Nemec, P. Jurči, P. Kosnáčová, M. Kučerová, Evaluation of structural isotropy of Cr-V ledeburitic steel made by powder metallurgy of rapidly solidified particles, Kovove Mater. 54 (2016), 453 – 462.
DOI: 10.4149/km_2016_6_453
Google Scholar
[21]
S. Morito, J. Nishikawa, T. Maki, Dislocation Density within Lath Martensite in Fe-C and Fe-Ni Alloys, ISIJ Int., 43 (2003), 1475 – 1477.
DOI: 10.2355/isijinternational.43.1475
Google Scholar
[22]
J. Ďurica, J. Ptačinová, M. Dománková, L. Čaplovič, M. Čaplovičová, L. Hrušovská, V. Malovcová, P. Jurči, Changes in microstructure of ledeburitic tool steel due to vacuum austenitizing and quenching, sub-zero treatments at −140°C and tempering, Vacuum 170 (2019), doi: https://doi.org/10.1016/j.vacuum.2019.108977.
DOI: 10.1016/j.vacuum.2019.108977
Google Scholar
[23]
P. Jurči, M. Dománková, M. Hudáková, J. Ptačinová, M. Pašák, P. Palček, Characterization of microstructure and tempering response of conventionally quenched, short- and long-time sub-zero treated PM Vanadis 6 ledeburitic tool steel, Mater. Charact., 134 (2017), 398 – 415.
DOI: 10.1016/j.matchar.2017.10.029
Google Scholar
[24]
G.T. Eldis, M. Cohen, Strength of initially virgin martensite at -196 °C after aging and tempering. Metall. Trans., 14A (1983), 1007 – 1012.
DOI: 10.1007/bf02659848
Google Scholar
[25]
M.J. Van Genderen, A. Boettger, R.J. Cernik, E.J. Mittemeijer, Early Stages of Decomposition in Iron-Carbon and Iron-Nitrogen Martensites: Diffraction Analysis Using Synchrotron Radiation. Metall. Trans., 24A (1993), 1965 – (1973).
DOI: 10.1007/bf02666331
Google Scholar
[26]
M. Villa, M.F. Hansen, M.A.J. Somers, Martensite formation in Fe-C alloys at cryogenic temperatures, Scr. Mater. 141 (2017) 129–132.
DOI: 10.1016/j.scriptamat.2017.08.005
Google Scholar
[27]
A.J. McEvily, R.C. Ku, T.L. Johnston, The source of martensite strength, Trans. Metall. Soc. AIME, 236 (1966), 108 – 114.
Google Scholar
[28]
J. Pietikainen, Effects of the aging of martensite on its deformation characteristics and on fracture in Fe – Ni – Si – C steel, Journal of the Iron and Steel Institute, 1 (1968), 74 – 78.
Google Scholar
[29]
M. Pašák, Study of the phase transformations kinetics in high alloy systems based on iron. PhD Thesis. Trnava: Faculty of Materials and Technology, Trnava, (2015).
Google Scholar
[30]
H. K. D. H. Bhadeshia, Cementite, International Mater. Rev., 2019,.
Google Scholar
[31]
M. Umemoto, Y. Todaka, K. Tsuchiya, Mechanical properties of cementite and fabrication of artificial pearlite, Mater. Sci. Forum, 426-432 (2003), 859 – 864.
DOI: 10.4028/www.scientific.net/msf.426-432.859
Google Scholar
[32]
L.E. Kar´kina, T.A. Zubkova, I.L. Yakovleva, Dislocation Structure of Cementite in Granular Pearlite after Cold Plastic Deformation, The Physics of Metals and Metallography 114 (2013), 234 – 241.
DOI: 10.1134/s0031918x13030095
Google Scholar
[33]
S. Li, N. Min, J. Li, X. Wu, Ch. Li, L. Tang, Experimental verification of segregation of carbon and precipitation of carbides due to deep cryogenic treatment for tool steel by internal friction method, Mater. Sci. Eng., A575 (2013), 51 – 60.
DOI: 10.1016/j.msea.2013.03.070
Google Scholar
[34]
P. Jurči, Sub-Zero Treatment of Cold Work Tool Steels – Metallurgical Background and the Effect on Microstructure and Properties, HTM J. Heat Treat. Mater., 72 (2017), 62 – 68.
DOI: 10.3139/105.110301
Google Scholar