Sintering Problems during Preparation of Ti-Al-Si Alloys

Article Preview

Abstract:

Ti-Al-Si alloys are materials for high-temperature applications. They are characterized by low density, good mechanical properties and excellent resistance against oxidation in comparison with other commonly used alloys, for example nickel alloys or stainless steels. The preparation of Ti-Al-Si is very problematic due to high melting points of the intermediary phases, the high reactivity of melt with the melting crucibles and with the atmosphere in the furnace or formation of the cracks and pores during the process. Powder metallurgy seems to be a promising method for preparation of Ti-Al-Si alloys but there are still many complications. In this work, Ti-Al-Si alloys were prepared by unconventional powder metallurgy techniques and the aim of this work was to describe the problems during the sintering of these materials and their solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-45

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Yamaguchi, H. Inui, K. Ito, High-temperature structural intermetallics, Acta Materialia, 48 (2000) 307-322.

DOI: 10.1016/s1359-6454(99)00301-8

Google Scholar

[2] T. Noda, Application of cast gamma TiAl for automobiles, Intermetallics, 6 (1998) 709-713.

DOI: 10.1016/s0966-9795(98)00060-0

Google Scholar

[3] Z.Q. Guan, T. Pfullmann, M. Oehring, R. Bormann, Phase formation during ball milling and subsequent thermal decomposition of Ti–Al–Si powder blends, Journal of Alloys and Compounds, 252 (1997) 245-251.

DOI: 10.1016/s0925-8388(96)02720-x

Google Scholar

[4] P. Novák, F. Průša, J. Šerák, D. Vojtěch, A. Michalcová, Oxidation resistance and thermal stability of Ti-Al-Si alloys produced by reactive sintering, Metal, (2009).

DOI: 10.1016/j.jallcom.2010.05.115

Google Scholar

[5] P. Novák, A. Michalcová, J. Šerák, D. Vojtěch, T. Fabián, S. Randáková, F. Průša, V. Knotek, M. Novák, Preparation of Ti–Al–Si alloys by reactive sintering, Journal of Alloys and Compounds, 470 (2009) 123-126.

DOI: 10.1016/j.jallcom.2008.02.046

Google Scholar

[6] A. Lasalmonie, Intermetallics: Why is it so difficult to introduce them in gas turbine engines?, Intermetallics, 14 (2006) 1123-1129.

DOI: 10.1016/j.intermet.2006.01.064

Google Scholar

[7] J.S. Wu, P.A. Beaven, R. Wagner, The Ti3(Al, Si) + Ti5(Si, Al)3 Eutectic Reaction in the Ti-Al-Si system, Scripta Metallurgica et Materialia, 24 (1990) 207-212.

DOI: 10.1016/0956-716x(90)90593-6

Google Scholar

[8] B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer, TiAl alloys in commercial aircraft engines, Materials at High Temperatures, 33 (2016) 549-559.

DOI: 10.1080/09603409.2016.1183068

Google Scholar

[9] Y. Kimura, D.P. Pope, Ductility and toughness in intermetallics, Intermetallics, 6 (1998) 567-571.

DOI: 10.1016/s0966-9795(98)00061-2

Google Scholar

[10] S. Kumaran, T. Sasikumar, R. Arockiakumar, T. Srinivasa Rao, Nanostructured titanium aluminides prepared by mechanical alloying and subsequent thermal treatment, Powder Technology, 185 (2008) 124-130.

DOI: 10.1016/j.powtec.2007.10.006

Google Scholar

[11] L. Zemčík, A. Dlouhý, S. Król, M. Prażmowskic, Vacuum Metallurgy of TiAl Intermetallics, Metal, (2005).

Google Scholar

[12] A. Knaislová, P. Novák, M. Cabibbo, F. Průša, C. Paoletti, L. Jaworska, D. Vojtěch, Combination of reaction synthesis and Spark Plasma Sintering in production of Ti-Al-Si alloys, Journal of Alloys and Compounds, 752 (2018) 317-326.

DOI: 10.1016/j.jallcom.2018.04.187

Google Scholar

[13] K. Skotnicová, M. Kursa, Prášková metalurgie, in, Vysoká škola báňská – Technická univerzita Ostrava, (2013).

Google Scholar

[14] S.A. Tsukerman, INTRODUCTION, in: Powder Metallurgy, Pergamon, 1965, pp. vii-xi.

Google Scholar

[15] P. Novák, D. Vojtěch, J. Šerák, J. Kubásek, F. Průša, V. Knotek, A. Michalcová, M. Novák, Synthesis of Intermediary Phases in Ti-Al-Si System by Reactive Sintering, Chemické listy, 103 (2009) 1022-1026.

DOI: 10.1179/174329009x449314

Google Scholar

[16] K. Morsi, Review: reaction synthesis processing of Ni–Al intermetallic materials, Materials Science and Engineering: A, 299 (2001) 1-15.

DOI: 10.1016/s0921-5093(00)01407-6

Google Scholar

[17] D.E. Alman, Reactive sintering of TiAl–Ti5Si3 in situ composites, Intermetallics, 13 (2005) 572-579.

DOI: 10.1016/j.intermet.2004.09.011

Google Scholar

[18] W.Y. Yang, G.C. Weatherly, A study of combustion synthesis of Ti-Al intermetallic compounds, Journal of Materials Science, 31 (1996) 3707-3713.

DOI: 10.1007/bf00352784

Google Scholar

[19] R.W. Rice, W.J. McDonough, Intrinsic Volume Changes of Self-propagating Synthesis, Journal of the American Ceramic Society, 68 (1985) C-122-C-123.

DOI: 10.1111/j.1151-2916.1985.tb15328.x

Google Scholar

[20] F. Wenbin, H. Lianxi, H. Wenxiong, W. Erde, L. Xiaoqing, Microstructure and properties of a TiAl alloy prepared by mechanical milling and subsequent reactive sintering, Materials Science and Engineering: A, 403 (2005) 186-190.

DOI: 10.1016/j.msea.2005.04.049

Google Scholar

[21] V.L. Kvanin, N.T. Balikhina, S.G. Vadchenko, I.P. Borovinskaya, A.E. Sychev, Preparation of γ-TiAl intermetallic compounds through self-propagating high-temperature synthesis and compaction, Inorganic Materials, 44 (2008) 1194-1198.

DOI: 10.1134/s0020168508110095

Google Scholar

[22] J. Gu, S. Gu, L. Xue, S. Wu, Y. Yan, Microstructure and mechanical properties of in-situ Al13Fe4/Al composites prepared by mechanical alloying and spark plasma sintering, Materials Science and Engineering: A, 558 (2012) 684-691.

DOI: 10.1016/j.msea.2012.08.076

Google Scholar

[23] K.P. Rao, J.B. Zhou, Characterization of mechanically alloyed Ti–Al–Si powder blends and their subsequent thermal stability, Materials Science and Engineering: A, 338 (2002) 282-298.

DOI: 10.1016/s0921-5093(02)00095-3

Google Scholar

[24] J. Vystrčil, P. Novák, A. Michalcová, Preparation of Ultra-Fine Grained Alloys Based on Fe-Al-Si And Ti-Al-Si Intermetallic Compounds by Powder Metallurgy Using the Mechanical Alloying, Manufacturing Technology, Vol. 15 (2015) 238-242.

DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/2/238

Google Scholar

[25] A. Vyas, K.P. Rao, Y.V.R.K. Prasad, Mechanical alloying characteristics and thermal stability of Ti–Al–Si and Ti–Al–Si–C powders, Journal of Alloys and Compounds, 475 (2009) 252-260.

DOI: 10.1016/j.jallcom.2008.07.094

Google Scholar

[26] C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science, 46 (2001) 1-184.

Google Scholar

[27] J.R. Groza, A. Zavaliangos, Sintering activation by external electrical field, Materials Science and Engineering: A, 287 (2000) 171-177.

DOI: 10.1016/s0921-5093(00)00771-1

Google Scholar

[28] M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H.U. Kessel, J. Hennicke, R. Kirchner, T. Kessel, Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials, InTech, (2013).

DOI: 10.5772/53706

Google Scholar

[29] Z.-H. Zhang, Z.-F. Liu, J.-F. Lu, X.-B. Shen, F.-C. Wang, Y.-D. Wang, The sintering mechanism in spark plasma sintering – Proof of the occurrence of spark discharge, Scripta Materialia, 81 (2014) 56-59.

DOI: 10.1016/j.scriptamat.2014.03.011

Google Scholar

[30] S.-X. Song, Z. Wang, G.-P. Shi, Heating mechanism of spark plasma sintering, Ceramics International, 39 (2013) 1393-1396.

DOI: 10.1016/j.ceramint.2012.07.080

Google Scholar

[31] A. Knaislová, P. Novák, S. Cygan, L. Jaworska, M. Cabibbo, High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti–Al–Si Alloys, Materials, 10 (2017) 465.

DOI: 10.3390/ma10050465

Google Scholar

[32] D.-L. Yung, S. Cygan, M. Antonov, L. Jaworska, I. Hussainova, Ultra high-pressure spark plasma sintered ZrC-Mo and ZrC-TiC composites, International Journal of Refractory Metals and Hard Materials, 61 (2016) 201-206.

DOI: 10.1016/j.ijrmhm.2016.09.014

Google Scholar

[33] D. Vallauri, B. DeBenedetti, L. Jaworska, P. Klimczyk, M.A. Rodriguez, Wear-resistant ceramic and metal–ceramic ultrafine composites fabricated from combustion synthesised metastable powders, International Journal of Refractory Metals and Hard Materials, 27 (2009) 996-1003.

DOI: 10.1016/j.ijrmhm.2009.07.003

Google Scholar

[34] Klimczyk P., Figiel P., Jaworska L., B. M., Wysokociśnieniowe spiekanie nanoproszków w układzie Si3N4-SiC, Ceramics, (2008) 459–466.

Google Scholar

[35] P. Jurci, L. Janka, Wear resistance of sub-zero processed Cr-V ledeburitic steel vanadis 6, METAL 2012 - Conference Proceedings, 21st International Conference on Metallurgy and Materials, (2012) 634-639.

DOI: 10.3139/146.111962

Google Scholar