[1]
M. Yamaguchi, H. Inui, K. Ito, High-temperature structural intermetallics, Acta Materialia, 48 (2000) 307-322.
DOI: 10.1016/s1359-6454(99)00301-8
Google Scholar
[2]
T. Noda, Application of cast gamma TiAl for automobiles, Intermetallics, 6 (1998) 709-713.
DOI: 10.1016/s0966-9795(98)00060-0
Google Scholar
[3]
Z.Q. Guan, T. Pfullmann, M. Oehring, R. Bormann, Phase formation during ball milling and subsequent thermal decomposition of Ti–Al–Si powder blends, Journal of Alloys and Compounds, 252 (1997) 245-251.
DOI: 10.1016/s0925-8388(96)02720-x
Google Scholar
[4]
P. Novák, F. Průša, J. Šerák, D. Vojtěch, A. Michalcová, Oxidation resistance and thermal stability of Ti-Al-Si alloys produced by reactive sintering, Metal, (2009).
DOI: 10.1016/j.jallcom.2010.05.115
Google Scholar
[5]
P. Novák, A. Michalcová, J. Šerák, D. Vojtěch, T. Fabián, S. Randáková, F. Průša, V. Knotek, M. Novák, Preparation of Ti–Al–Si alloys by reactive sintering, Journal of Alloys and Compounds, 470 (2009) 123-126.
DOI: 10.1016/j.jallcom.2008.02.046
Google Scholar
[6]
A. Lasalmonie, Intermetallics: Why is it so difficult to introduce them in gas turbine engines?, Intermetallics, 14 (2006) 1123-1129.
DOI: 10.1016/j.intermet.2006.01.064
Google Scholar
[7]
J.S. Wu, P.A. Beaven, R. Wagner, The Ti3(Al, Si) + Ti5(Si, Al)3 Eutectic Reaction in the Ti-Al-Si system, Scripta Metallurgica et Materialia, 24 (1990) 207-212.
DOI: 10.1016/0956-716x(90)90593-6
Google Scholar
[8]
B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer, TiAl alloys in commercial aircraft engines, Materials at High Temperatures, 33 (2016) 549-559.
DOI: 10.1080/09603409.2016.1183068
Google Scholar
[9]
Y. Kimura, D.P. Pope, Ductility and toughness in intermetallics, Intermetallics, 6 (1998) 567-571.
DOI: 10.1016/s0966-9795(98)00061-2
Google Scholar
[10]
S. Kumaran, T. Sasikumar, R. Arockiakumar, T. Srinivasa Rao, Nanostructured titanium aluminides prepared by mechanical alloying and subsequent thermal treatment, Powder Technology, 185 (2008) 124-130.
DOI: 10.1016/j.powtec.2007.10.006
Google Scholar
[11]
L. Zemčík, A. Dlouhý, S. Król, M. Prażmowskic, Vacuum Metallurgy of TiAl Intermetallics, Metal, (2005).
Google Scholar
[12]
A. Knaislová, P. Novák, M. Cabibbo, F. Průša, C. Paoletti, L. Jaworska, D. Vojtěch, Combination of reaction synthesis and Spark Plasma Sintering in production of Ti-Al-Si alloys, Journal of Alloys and Compounds, 752 (2018) 317-326.
DOI: 10.1016/j.jallcom.2018.04.187
Google Scholar
[13]
K. Skotnicová, M. Kursa, Prášková metalurgie, in, Vysoká škola báňská – Technická univerzita Ostrava, (2013).
Google Scholar
[14]
S.A. Tsukerman, INTRODUCTION, in: Powder Metallurgy, Pergamon, 1965, pp. vii-xi.
Google Scholar
[15]
P. Novák, D. Vojtěch, J. Šerák, J. Kubásek, F. Průša, V. Knotek, A. Michalcová, M. Novák, Synthesis of Intermediary Phases in Ti-Al-Si System by Reactive Sintering, Chemické listy, 103 (2009) 1022-1026.
DOI: 10.1179/174329009x449314
Google Scholar
[16]
K. Morsi, Review: reaction synthesis processing of Ni–Al intermetallic materials, Materials Science and Engineering: A, 299 (2001) 1-15.
DOI: 10.1016/s0921-5093(00)01407-6
Google Scholar
[17]
D.E. Alman, Reactive sintering of TiAl–Ti5Si3 in situ composites, Intermetallics, 13 (2005) 572-579.
DOI: 10.1016/j.intermet.2004.09.011
Google Scholar
[18]
W.Y. Yang, G.C. Weatherly, A study of combustion synthesis of Ti-Al intermetallic compounds, Journal of Materials Science, 31 (1996) 3707-3713.
DOI: 10.1007/bf00352784
Google Scholar
[19]
R.W. Rice, W.J. McDonough, Intrinsic Volume Changes of Self-propagating Synthesis, Journal of the American Ceramic Society, 68 (1985) C-122-C-123.
DOI: 10.1111/j.1151-2916.1985.tb15328.x
Google Scholar
[20]
F. Wenbin, H. Lianxi, H. Wenxiong, W. Erde, L. Xiaoqing, Microstructure and properties of a TiAl alloy prepared by mechanical milling and subsequent reactive sintering, Materials Science and Engineering: A, 403 (2005) 186-190.
DOI: 10.1016/j.msea.2005.04.049
Google Scholar
[21]
V.L. Kvanin, N.T. Balikhina, S.G. Vadchenko, I.P. Borovinskaya, A.E. Sychev, Preparation of γ-TiAl intermetallic compounds through self-propagating high-temperature synthesis and compaction, Inorganic Materials, 44 (2008) 1194-1198.
DOI: 10.1134/s0020168508110095
Google Scholar
[22]
J. Gu, S. Gu, L. Xue, S. Wu, Y. Yan, Microstructure and mechanical properties of in-situ Al13Fe4/Al composites prepared by mechanical alloying and spark plasma sintering, Materials Science and Engineering: A, 558 (2012) 684-691.
DOI: 10.1016/j.msea.2012.08.076
Google Scholar
[23]
K.P. Rao, J.B. Zhou, Characterization of mechanically alloyed Ti–Al–Si powder blends and their subsequent thermal stability, Materials Science and Engineering: A, 338 (2002) 282-298.
DOI: 10.1016/s0921-5093(02)00095-3
Google Scholar
[24]
J. Vystrčil, P. Novák, A. Michalcová, Preparation of Ultra-Fine Grained Alloys Based on Fe-Al-Si And Ti-Al-Si Intermetallic Compounds by Powder Metallurgy Using the Mechanical Alloying, Manufacturing Technology, Vol. 15 (2015) 238-242.
DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/2/238
Google Scholar
[25]
A. Vyas, K.P. Rao, Y.V.R.K. Prasad, Mechanical alloying characteristics and thermal stability of Ti–Al–Si and Ti–Al–Si–C powders, Journal of Alloys and Compounds, 475 (2009) 252-260.
DOI: 10.1016/j.jallcom.2008.07.094
Google Scholar
[26]
C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science, 46 (2001) 1-184.
Google Scholar
[27]
J.R. Groza, A. Zavaliangos, Sintering activation by external electrical field, Materials Science and Engineering: A, 287 (2000) 171-177.
DOI: 10.1016/s0921-5093(00)00771-1
Google Scholar
[28]
M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H.U. Kessel, J. Hennicke, R. Kirchner, T. Kessel, Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials, InTech, (2013).
DOI: 10.5772/53706
Google Scholar
[29]
Z.-H. Zhang, Z.-F. Liu, J.-F. Lu, X.-B. Shen, F.-C. Wang, Y.-D. Wang, The sintering mechanism in spark plasma sintering – Proof of the occurrence of spark discharge, Scripta Materialia, 81 (2014) 56-59.
DOI: 10.1016/j.scriptamat.2014.03.011
Google Scholar
[30]
S.-X. Song, Z. Wang, G.-P. Shi, Heating mechanism of spark plasma sintering, Ceramics International, 39 (2013) 1393-1396.
DOI: 10.1016/j.ceramint.2012.07.080
Google Scholar
[31]
A. Knaislová, P. Novák, S. Cygan, L. Jaworska, M. Cabibbo, High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti–Al–Si Alloys, Materials, 10 (2017) 465.
DOI: 10.3390/ma10050465
Google Scholar
[32]
D.-L. Yung, S. Cygan, M. Antonov, L. Jaworska, I. Hussainova, Ultra high-pressure spark plasma sintered ZrC-Mo and ZrC-TiC composites, International Journal of Refractory Metals and Hard Materials, 61 (2016) 201-206.
DOI: 10.1016/j.ijrmhm.2016.09.014
Google Scholar
[33]
D. Vallauri, B. DeBenedetti, L. Jaworska, P. Klimczyk, M.A. Rodriguez, Wear-resistant ceramic and metal–ceramic ultrafine composites fabricated from combustion synthesised metastable powders, International Journal of Refractory Metals and Hard Materials, 27 (2009) 996-1003.
DOI: 10.1016/j.ijrmhm.2009.07.003
Google Scholar
[34]
Klimczyk P., Figiel P., Jaworska L., B. M., Wysokociśnieniowe spiekanie nanoproszków w układzie Si3N4-SiC, Ceramics, (2008) 459–466.
Google Scholar
[35]
P. Jurci, L. Janka, Wear resistance of sub-zero processed Cr-V ledeburitic steel vanadis 6, METAL 2012 - Conference Proceedings, 21st International Conference on Metallurgy and Materials, (2012) 634-639.
DOI: 10.3139/146.111962
Google Scholar