Second Law Analysis of MHD Micropolar Fluid Flow through a Porous Microchannel with Multiple Slip and Convective Boundary Conditions

Article Preview

Abstract:

The impact of space dependent heat source in the transport of micropolar fluid in the existence of magnetic dipole, Joule heating, viscous heating, thermal radiation, hydrodynamic slips and convective condition effects has been numerically investigated. The dimensioned governing equations are non-dimensionlzed by using dimensionless variables then non-dimensional forms of the corresponding equations are than tackled by the versatile Finite Element Method (FEM). The effects of pertinent physical parameters characterize the flow phenomena are presented through graphs and discussed. It is found that, the impact of thermal based heat source advances the heat transfer characteristics significantly than exponential to space dependent. The thermal performance can be improved through the effects of magnetic dipole, viscous heating, Joule heating and convective condition. Further, the present numerical results are compared with previously published results in the literature as a limiting case of the considered problem and found to be in good agreement with the existing results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-141

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.D. Makinde, I. L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution, International Journal of Thermal Sciences 109 (2016) 159-171.

DOI: 10.1016/j.ijthermalsci.2016.06.003

Google Scholar

[2] O.D. Makinde, I.L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, Journal of Molecular liquids 221 (2016) 733-743.

DOI: 10.1016/j.molliq.2016.06.047

Google Scholar

[3] O. D. Makinde, N. Sandeep, I. L. Animasaun, M. S. Tshehla, Numerical exploration of Cattaneo-Christov heat flux and mass transfer in magnetohydrodynamic flow over various geometries, In Defect and Diffusion Forum 374 (2017) 67-82.

DOI: 10.4028/www.scientific.net/ddf.374.67

Google Scholar

[4] A. Wakif, Z. Boulahia, F. Ali, M. R. Eid, R. Sehaqui, Numerical analysis of the unsteady natural convection MHD Couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu–water nanofluids, International Journal of Applied and Computational Mathematics 4(3) (2018) 81.

DOI: 10.1007/s40819-018-0513-y

Google Scholar

[5] A. Wakif, A novel numerical procedure for simulating steady MHD convective flows of radiative Casson fluids over a horizontal stretching sheet with irregular geometry under the combined influence of temperature-dependent viscosity and thermal conductivity, Mathematical Problems in Engineering (2020) (2020).

DOI: 10.1155/2020/1675350

Google Scholar

[6] A. Wakif, A. Chamkha, T. Thumma, I. L. Animasaun, R. Sehaqui, Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno's nanofluid model, Journal of Thermal Analysis and Calorimetry (2020) 1-20.

DOI: 10.1007/s10973-020-09488-z

Google Scholar

[7] M. Zaydan, A. Wakif, I. L. Animasaun, U. Khan, D. Baleanu, R. Sehaqui, Significances of blowing and suction processes on the occurrence of thermo-magneto-convection phenomenon in a narrow nanofluidic medium: A revised Buongiorno's nanofluid model, Case Studies in Thermal Engineering 22 (2020) 100726.

DOI: 10.1016/j.csite.2020.100726

Google Scholar

[8] F. Mebarek-Oudina, A. Aissa, B. Mahanthesh, H. F. Öztop, Heat transport of magnetized Newtonian nanoliquids in an annular space between porous vertical cylinders with discrete heat source, International Communications in Heat and Mass Transfer 117 (2020) 104737.

DOI: 10.1016/j.icheatmasstransfer.2020.104737

Google Scholar

[9] A. Wakif, A. Chamkha, I. L. Animasaun, M. Zaydan, H. Waqas, R. Sehaqui, Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal riga plate in the coexistence of wall suction and joule heating effects: a comprehensive numerical investigation, Arabian Journal for Science and Engineering 45(11) (2020) 9423-9438.

DOI: 10.1007/s13369-020-04757-3

Google Scholar

[10] U. Khan, A. Zaib, D. Baleanu, M. Sheikholeslami, A. Wakif, Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction, Heliyon 6(7) (2020) e04565.

DOI: 10.1016/j.heliyon.2020.e04565

Google Scholar

[11] G. Rasool, A. Wakif, Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno's nanofluid model, Journal of Thermal Analysis and Calorimetry (2020) 1-15.

DOI: 10.1007/s10973-020-09865-8

Google Scholar

[12] B. H. Salman, H. A. Mohammed, K. M. Munisamy, A. S. Kherbeet, Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: a review, Renewable and Sustainable Energy Reviews 28 (2013) 848-880.

DOI: 10.1016/j.rser.2013.08.012

Google Scholar

[13] R. S. Gorla, B. J. Gireesha, Transient velocity and steady state entropy generation in a microfluidic Couette flow containing charged nano particles, International Journal of Applied Mechanics and Engineering 20(4) (2015) 787-804.

DOI: 10.1515/ijame-2015-0051

Google Scholar

[14] Y. T. Yang, Y. H. Wang, B. Y. Huang, Numerical optimization for nanofluid flow in microchannels using entropy generation minimization, Numerical Heat Transfer, Part A: Applications 67(5) (2015) 571-588.

DOI: 10.1080/10407782.2014.937282

Google Scholar

[15] G. Ibáñez, Entropy generation in MHD porous channel with hydrodynamic slip and convective boundary conditions, International Journal of Heat and Mass Transfer 80 (2015) 274-280.

DOI: 10.1016/j.ijheatmasstransfer.2014.09.025

Google Scholar

[16] M. M. Rashidi, M. Nasiri, M., Khezerloo, N. Laraqi, Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls, Journal of Magnetism and Magnetic Materials 401 (2016) 159-168.

DOI: 10.1016/j.jmmm.2015.10.034

Google Scholar

[17] A. Malvandi, S. A. Moshizi, D. D. Ganji, Two-component heterogeneous mixed convection of alumina/water nanofluid in microchannels with heat source/sink, Advanced Powder Technology 27(1) (2016) 245-254.

DOI: 10.1016/j.apt.2015.12.009

Google Scholar

[18] A. Malvandi, D. D. Ganji, Mixed Convection of Alumina/Water Nanofluid in Microchannels using Modified Buongiorno's Model in Presence of Heat Source/Sink, Journal of Applied Fluid Mechanics 9(5) (2016) 2277-2289.

DOI: 10.18869/acadpub.jafm.68.236.25641

Google Scholar

[19] O. Makinde, A. S. Eegunjobi, Entropy analysis of thermally radiating magnetohydrodynamic slip flow of Casson fluid in a microchannel filled with saturated porous media, Journal of Porous Media 19(9) (2016) 799-810.

DOI: 10.1615/jpormedia.v19.i9.40

Google Scholar

[20] A. A. Avramenko, A. I. Tyrinov, I. V. Shevchuk, N. P. Dmitrenko, A. V. Kravchuk, V. I. Shevchuk, Mixed convection in a vertical circular microchannel, International Journal of Thermal Sciences 121 (2017) 1-12.

DOI: 10.1016/j.ijthermalsci.2017.07.001

Google Scholar

[21] F. Mebarek-Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths, Engineering science and technology, an international journal, 20(4) (2017) 1324-1333.

DOI: 10.1016/j.jestch.2017.08.003

Google Scholar

[22] N. S. Shashikumar, B. J. Gireesha, B., Mahanthesh, B. C. Prasannakumara, Brinkman-Forchheimer flow of SWCNT and MWCNT magneto-nanoliquids in a microchannel with multiple slips and Joule heating aspects, Multidiscipline Modeling in Materials and Structures 14(4) (2018) 769-786.

DOI: 10.1108/mmms-01-2018-0005

Google Scholar

[23] M. M. Muhammad, M. Abdulhameed, I. Khan, Electro-magneto-hydrodynamic flow and radiative heat transfer of the non-Newtonian fluids through a porous micro-channel, Mechanics of Time-Dependent Materials 23(4) (2019) 407-425.

DOI: 10.1007/s11043-018-9395-y

Google Scholar

[24] S. T. Mohyud-Din, S. U. Jan, U. Khan, N. Ahmed, MHD flow of radiative micropolar nanofluid in a porous channel: optimal and numerical solutions, Neural Computing and Applications 29(3) (2018) 793-801.

DOI: 10.1007/s00521-016-2493-3

Google Scholar

[25] F. Mebarek‐Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer—Asian Research 48(1) (2019) 135-147.

DOI: 10.1002/htj.21375

Google Scholar

[26] J. Raza, F. Mebarek-Oudina, P. Ram, S. Sharma, MHD flow of non-Newtonian molybdenum disulfide nanofluid in a converging/diverging channel with Rosseland radiation, In Defect and Diffusion Forum 401 (2020) 92-106).

DOI: 10.4028/www.scientific.net/ddf.401.92

Google Scholar

[27] N. S. Shashikumar, M. Macha, B. J. Gireesha, N. Kishan, Finite element analysis of micropolar nanofluid flow through an inclined microchannel with thermal radiation, Multidiscipline Modeling in Materials and Structures 16(6) (2020) 1521-1538.

DOI: 10.1108/mmms-11-2019-0198

Google Scholar

[28] X. Shi, S. Li, Y.Wei, J. Gao, Numerical investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in a microchannel, International Communications in Heat and Mass Transfer 90 (2018) 111-120.

DOI: 10.1016/j.icheatmasstransfer.2017.11.007

Google Scholar

[29] S. A. Shehzad, B. Mahanthesh, B. J. Gireesha, N. S. Shashikumar, M. Madhu, Brinkman‐Forchheimer slip flow subject to exponential space and thermal‐dependent heat source in a microchannel utilizing SWCNT and MWCNT nanoliquids, Heat Transfer—Asian Research 48(5) (2019) 1688-1708.

DOI: 10.1002/htj.21452

Google Scholar

[30] A. Bejan, A study of entropy generation in fundamental convective heat transfer, Journal of heat transfer 101(4) (1979) 718-725.

DOI: 10.1115/1.3451063

Google Scholar

[31] K. Hooman, Heat transfer and entropy generation for forced convection through a microduct of rectangular cross-section: effects of velocity slip, temperature jump, and duct geometry, International Communications in Heat and Mass Transfer 35(9) (2008) 1065-1068.

DOI: 10.1016/j.icheatmasstransfer.2008.05.015

Google Scholar

[32] M. Torabi, K. Zhang, G. Yang, J. Wang, P. Wu, Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model, Energy 82 (2015) 922-938.

DOI: 10.1016/j.energy.2015.01.102

Google Scholar

[33] Makinde, O., & Eegunjobi, A. S. (2016). Entropy analysis of thermally radiating magnetohydrodynamic slip flow of Casson fluid in a microchannel filled with saturated porous media, Journal of Porous Media 19(9), 799-810.

DOI: 10.1615/jpormedia.v19.i9.40

Google Scholar

[34] G. Hunt, N. Karimi, M. Torabi, Analytical investigation of heat transfer and classical entropy generation in microreactors–the influences of exothermicity and asymmetry, Applied Thermal Engineering 119 (2017) 403-424.

DOI: 10.1016/j.applthermaleng.2017.03.057

Google Scholar

[35] N. S. Shashikumar, B. C. Prasannakumara, B. J. Gireesha, O. D. Makinde, Thermodynamics Analysis of MHD Casson Fluid Slip Flow in a Porous Microchannel with Thermal Radiation, In Diffusion Foundations 16 (2018) 120-139.

DOI: 10.4028/www.scientific.net/df.16.120

Google Scholar

[36] B. J. Gireesha, C. T. Srinivasa, N. S. Shashikumar, M. Macha, J. K. Singh, B. Mahanthesh, Entropy generation and heat transport analysis of Casson fluid flow with viscous and Joule heating in an inclined porous microchannel, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 233(5) (2019)1173-1184.

DOI: 10.1177/0954408919849987

Google Scholar

[37] M. Madhu, B. Mahanthesh, N. S. Shashikumar, S. A. Shehzad, S. U. Khan, B. J. Gireesha, Performance of second law in Carreau fluid flow by an inclined microchannel with radiative heated convective condition, International Communications in Heat and Mass Transfer 117 (2020) 104761.

DOI: 10.1016/j.icheatmasstransfer.2020.104761

Google Scholar

[38] G. Ibáñez, A. López, J. Pantoja, J. Moreira, Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation, International Journal of Heat and Mass Transfer 100 (2016) 89-97.

DOI: 10.1016/j.ijheatmasstransfer.2016.04.089

Google Scholar

[39] N. S. Shashikumar B. J. Gireesha, B. Mahanthesh, B. C. Prasannakumara and Ali J. Chamkha, Entropy generation analysis of magneto-nanoliquids embedded with aluminium and titanium alloy nanoparticles in microchannel with partial slips and convective conditions, International Journal of Numerical Methods for Heat & Fluid Flow 29(10) (2018) 3638-3658.

DOI: 10.1108/hff-06-2018-0301

Google Scholar

[40] A. Wakif, M. Qasim, M. I. Afridi, S. Saleem, M. M. Al-Qarni, Numerical examination of the entropic energy harvesting in a magnetohydrodynamic dissipative flow of Stokes' second problem: utilization of the gear-generalized differential quadrature method, Journal of Non-Equilibrium Thermodynamics 44(4) (2019) 385-403.

DOI: 10.1515/jnet-2018-0099

Google Scholar

[41] S. Marzougui, F. Mebarek-Oudina, A. Assia, M. Magherbi, Z. Shah, K. Ramesh, Entropy generation on magneto-convective flow of copper–water nanofluid in a cavity with chamfers, Journal of Thermal Analysis and Calorimetry (2020) 1-12.

DOI: 10.1007/s10973-020-09662-3

Google Scholar

[42] A. Cemal Eringen, Theory of micropolar fluids, Journal of Mathematics and Mechanics 16(1) (1966) 1-18.

Google Scholar

[43] G. Ahmadi, Self-similar solution of in compressible micropolar boundary layer flow over a semi-infinite plate, International Journal of Engineering Science 14(7) (1976) 639-646.

DOI: 10.1016/0020-7225(76)90006-9

Google Scholar

[44] K. K. Sankara, L. T. Watson, Micropolar flow past a stretching sheet, Zeitschrift für angewandte Mathematik und Physik 36(6) (1985) 845-853.

DOI: 10.1007/bf00944898

Google Scholar

[45] Alizadeh, M., Dogonchi, A. S., & Ganji, D. D. (2018). Micropolar nanofluid flow and heat transfer between penetrable walls in the presence of thermal radiation and magnetic field, Case Studies in Thermal Engineering 12, 319-332.

DOI: 10.1016/j.csite.2018.05.002

Google Scholar

[46] D. Srinivasacharya, K. H. Bindu, Entropy generation in a micropolar fluid flow through an inclined channel with slip and convective boundary conditions, Energy, 91 (2015) 72-83.

DOI: 10.1016/j.energy.2015.08.014

Google Scholar

[47] D. Srinivasacharya, K. H. Bindu, Entropy generation in a micropolar fluid flow through an inclined channel, Alexandria Engineering Journal 55(2) (2016) 973-982.

DOI: 10.1016/j.aej.2016.02.027

Google Scholar

[48] J. Srinivas, J. R. Murthy, A. J. Chamkha, Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using HAM, International Journal of Numerical Methods for Heat & Fluid Flow 26(3/4) (2016) 1027-1049.

DOI: 10.1108/hff-09-2015-0354

Google Scholar

[49] L. Animasaun, O. K. Koriko, New similarity solution of micropolar fluid flow problem over an uhspr in the presence of quartic kind of autocatalytic chemical reaction. Frontiers in Heat and Mass Transfer (2017) 8.

DOI: 10.5098/hmt.8.26

Google Scholar

[50] M. Madhu, N. Kishan, MHD boundary-layer flow of a non-Newtonian nanofluid past a stretching sheet with a heat source/sink, Journal of Applied Mechanics and Technical Physics 57(5) (2016) 908-915.

DOI: 10.1134/s0021894416050199

Google Scholar

[51] N. A. Shah, I. L. Animasaun, R. O. Ibraheem, H. A. Babatunde, N. Sandeep, I. Pop, Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces, Journal of Molecular liquids 249 (2018). 980-990.

DOI: 10.1016/j.molliq.2017.11.042

Google Scholar