[1]
O.D. Makinde, I. L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution, International Journal of Thermal Sciences 109 (2016) 159-171.
DOI: 10.1016/j.ijthermalsci.2016.06.003
Google Scholar
[2]
O.D. Makinde, I.L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, Journal of Molecular liquids 221 (2016) 733-743.
DOI: 10.1016/j.molliq.2016.06.047
Google Scholar
[3]
O. D. Makinde, N. Sandeep, I. L. Animasaun, M. S. Tshehla, Numerical exploration of Cattaneo-Christov heat flux and mass transfer in magnetohydrodynamic flow over various geometries, In Defect and Diffusion Forum 374 (2017) 67-82.
DOI: 10.4028/www.scientific.net/ddf.374.67
Google Scholar
[4]
A. Wakif, Z. Boulahia, F. Ali, M. R. Eid, R. Sehaqui, Numerical analysis of the unsteady natural convection MHD Couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu–water nanofluids, International Journal of Applied and Computational Mathematics 4(3) (2018) 81.
DOI: 10.1007/s40819-018-0513-y
Google Scholar
[5]
A. Wakif, A novel numerical procedure for simulating steady MHD convective flows of radiative Casson fluids over a horizontal stretching sheet with irregular geometry under the combined influence of temperature-dependent viscosity and thermal conductivity, Mathematical Problems in Engineering (2020) (2020).
DOI: 10.1155/2020/1675350
Google Scholar
[6]
A. Wakif, A. Chamkha, T. Thumma, I. L. Animasaun, R. Sehaqui, Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno's nanofluid model, Journal of Thermal Analysis and Calorimetry (2020) 1-20.
DOI: 10.1007/s10973-020-09488-z
Google Scholar
[7]
M. Zaydan, A. Wakif, I. L. Animasaun, U. Khan, D. Baleanu, R. Sehaqui, Significances of blowing and suction processes on the occurrence of thermo-magneto-convection phenomenon in a narrow nanofluidic medium: A revised Buongiorno's nanofluid model, Case Studies in Thermal Engineering 22 (2020) 100726.
DOI: 10.1016/j.csite.2020.100726
Google Scholar
[8]
F. Mebarek-Oudina, A. Aissa, B. Mahanthesh, H. F. Öztop, Heat transport of magnetized Newtonian nanoliquids in an annular space between porous vertical cylinders with discrete heat source, International Communications in Heat and Mass Transfer 117 (2020) 104737.
DOI: 10.1016/j.icheatmasstransfer.2020.104737
Google Scholar
[9]
A. Wakif, A. Chamkha, I. L. Animasaun, M. Zaydan, H. Waqas, R. Sehaqui, Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal riga plate in the coexistence of wall suction and joule heating effects: a comprehensive numerical investigation, Arabian Journal for Science and Engineering 45(11) (2020) 9423-9438.
DOI: 10.1007/s13369-020-04757-3
Google Scholar
[10]
U. Khan, A. Zaib, D. Baleanu, M. Sheikholeslami, A. Wakif, Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction, Heliyon 6(7) (2020) e04565.
DOI: 10.1016/j.heliyon.2020.e04565
Google Scholar
[11]
G. Rasool, A. Wakif, Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno's nanofluid model, Journal of Thermal Analysis and Calorimetry (2020) 1-15.
DOI: 10.1007/s10973-020-09865-8
Google Scholar
[12]
B. H. Salman, H. A. Mohammed, K. M. Munisamy, A. S. Kherbeet, Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: a review, Renewable and Sustainable Energy Reviews 28 (2013) 848-880.
DOI: 10.1016/j.rser.2013.08.012
Google Scholar
[13]
R. S. Gorla, B. J. Gireesha, Transient velocity and steady state entropy generation in a microfluidic Couette flow containing charged nano particles, International Journal of Applied Mechanics and Engineering 20(4) (2015) 787-804.
DOI: 10.1515/ijame-2015-0051
Google Scholar
[14]
Y. T. Yang, Y. H. Wang, B. Y. Huang, Numerical optimization for nanofluid flow in microchannels using entropy generation minimization, Numerical Heat Transfer, Part A: Applications 67(5) (2015) 571-588.
DOI: 10.1080/10407782.2014.937282
Google Scholar
[15]
G. Ibáñez, Entropy generation in MHD porous channel with hydrodynamic slip and convective boundary conditions, International Journal of Heat and Mass Transfer 80 (2015) 274-280.
DOI: 10.1016/j.ijheatmasstransfer.2014.09.025
Google Scholar
[16]
M. M. Rashidi, M. Nasiri, M., Khezerloo, N. Laraqi, Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls, Journal of Magnetism and Magnetic Materials 401 (2016) 159-168.
DOI: 10.1016/j.jmmm.2015.10.034
Google Scholar
[17]
A. Malvandi, S. A. Moshizi, D. D. Ganji, Two-component heterogeneous mixed convection of alumina/water nanofluid in microchannels with heat source/sink, Advanced Powder Technology 27(1) (2016) 245-254.
DOI: 10.1016/j.apt.2015.12.009
Google Scholar
[18]
A. Malvandi, D. D. Ganji, Mixed Convection of Alumina/Water Nanofluid in Microchannels using Modified Buongiorno's Model in Presence of Heat Source/Sink, Journal of Applied Fluid Mechanics 9(5) (2016) 2277-2289.
DOI: 10.18869/acadpub.jafm.68.236.25641
Google Scholar
[19]
O. Makinde, A. S. Eegunjobi, Entropy analysis of thermally radiating magnetohydrodynamic slip flow of Casson fluid in a microchannel filled with saturated porous media, Journal of Porous Media 19(9) (2016) 799-810.
DOI: 10.1615/jpormedia.v19.i9.40
Google Scholar
[20]
A. A. Avramenko, A. I. Tyrinov, I. V. Shevchuk, N. P. Dmitrenko, A. V. Kravchuk, V. I. Shevchuk, Mixed convection in a vertical circular microchannel, International Journal of Thermal Sciences 121 (2017) 1-12.
DOI: 10.1016/j.ijthermalsci.2017.07.001
Google Scholar
[21]
F. Mebarek-Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths, Engineering science and technology, an international journal, 20(4) (2017) 1324-1333.
DOI: 10.1016/j.jestch.2017.08.003
Google Scholar
[22]
N. S. Shashikumar, B. J. Gireesha, B., Mahanthesh, B. C. Prasannakumara, Brinkman-Forchheimer flow of SWCNT and MWCNT magneto-nanoliquids in a microchannel with multiple slips and Joule heating aspects, Multidiscipline Modeling in Materials and Structures 14(4) (2018) 769-786.
DOI: 10.1108/mmms-01-2018-0005
Google Scholar
[23]
M. M. Muhammad, M. Abdulhameed, I. Khan, Electro-magneto-hydrodynamic flow and radiative heat transfer of the non-Newtonian fluids through a porous micro-channel, Mechanics of Time-Dependent Materials 23(4) (2019) 407-425.
DOI: 10.1007/s11043-018-9395-y
Google Scholar
[24]
S. T. Mohyud-Din, S. U. Jan, U. Khan, N. Ahmed, MHD flow of radiative micropolar nanofluid in a porous channel: optimal and numerical solutions, Neural Computing and Applications 29(3) (2018) 793-801.
DOI: 10.1007/s00521-016-2493-3
Google Scholar
[25]
F. Mebarek‐Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer—Asian Research 48(1) (2019) 135-147.
DOI: 10.1002/htj.21375
Google Scholar
[26]
J. Raza, F. Mebarek-Oudina, P. Ram, S. Sharma, MHD flow of non-Newtonian molybdenum disulfide nanofluid in a converging/diverging channel with Rosseland radiation, In Defect and Diffusion Forum 401 (2020) 92-106).
DOI: 10.4028/www.scientific.net/ddf.401.92
Google Scholar
[27]
N. S. Shashikumar, M. Macha, B. J. Gireesha, N. Kishan, Finite element analysis of micropolar nanofluid flow through an inclined microchannel with thermal radiation, Multidiscipline Modeling in Materials and Structures 16(6) (2020) 1521-1538.
DOI: 10.1108/mmms-11-2019-0198
Google Scholar
[28]
X. Shi, S. Li, Y.Wei, J. Gao, Numerical investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in a microchannel, International Communications in Heat and Mass Transfer 90 (2018) 111-120.
DOI: 10.1016/j.icheatmasstransfer.2017.11.007
Google Scholar
[29]
S. A. Shehzad, B. Mahanthesh, B. J. Gireesha, N. S. Shashikumar, M. Madhu, Brinkman‐Forchheimer slip flow subject to exponential space and thermal‐dependent heat source in a microchannel utilizing SWCNT and MWCNT nanoliquids, Heat Transfer—Asian Research 48(5) (2019) 1688-1708.
DOI: 10.1002/htj.21452
Google Scholar
[30]
A. Bejan, A study of entropy generation in fundamental convective heat transfer, Journal of heat transfer 101(4) (1979) 718-725.
DOI: 10.1115/1.3451063
Google Scholar
[31]
K. Hooman, Heat transfer and entropy generation for forced convection through a microduct of rectangular cross-section: effects of velocity slip, temperature jump, and duct geometry, International Communications in Heat and Mass Transfer 35(9) (2008) 1065-1068.
DOI: 10.1016/j.icheatmasstransfer.2008.05.015
Google Scholar
[32]
M. Torabi, K. Zhang, G. Yang, J. Wang, P. Wu, Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model, Energy 82 (2015) 922-938.
DOI: 10.1016/j.energy.2015.01.102
Google Scholar
[33]
Makinde, O., & Eegunjobi, A. S. (2016). Entropy analysis of thermally radiating magnetohydrodynamic slip flow of Casson fluid in a microchannel filled with saturated porous media, Journal of Porous Media 19(9), 799-810.
DOI: 10.1615/jpormedia.v19.i9.40
Google Scholar
[34]
G. Hunt, N. Karimi, M. Torabi, Analytical investigation of heat transfer and classical entropy generation in microreactors–the influences of exothermicity and asymmetry, Applied Thermal Engineering 119 (2017) 403-424.
DOI: 10.1016/j.applthermaleng.2017.03.057
Google Scholar
[35]
N. S. Shashikumar, B. C. Prasannakumara, B. J. Gireesha, O. D. Makinde, Thermodynamics Analysis of MHD Casson Fluid Slip Flow in a Porous Microchannel with Thermal Radiation, In Diffusion Foundations 16 (2018) 120-139.
DOI: 10.4028/www.scientific.net/df.16.120
Google Scholar
[36]
B. J. Gireesha, C. T. Srinivasa, N. S. Shashikumar, M. Macha, J. K. Singh, B. Mahanthesh, Entropy generation and heat transport analysis of Casson fluid flow with viscous and Joule heating in an inclined porous microchannel, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 233(5) (2019)1173-1184.
DOI: 10.1177/0954408919849987
Google Scholar
[37]
M. Madhu, B. Mahanthesh, N. S. Shashikumar, S. A. Shehzad, S. U. Khan, B. J. Gireesha, Performance of second law in Carreau fluid flow by an inclined microchannel with radiative heated convective condition, International Communications in Heat and Mass Transfer 117 (2020) 104761.
DOI: 10.1016/j.icheatmasstransfer.2020.104761
Google Scholar
[38]
G. Ibáñez, A. López, J. Pantoja, J. Moreira, Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation, International Journal of Heat and Mass Transfer 100 (2016) 89-97.
DOI: 10.1016/j.ijheatmasstransfer.2016.04.089
Google Scholar
[39]
N. S. Shashikumar B. J. Gireesha, B. Mahanthesh, B. C. Prasannakumara and Ali J. Chamkha, Entropy generation analysis of magneto-nanoliquids embedded with aluminium and titanium alloy nanoparticles in microchannel with partial slips and convective conditions, International Journal of Numerical Methods for Heat & Fluid Flow 29(10) (2018) 3638-3658.
DOI: 10.1108/hff-06-2018-0301
Google Scholar
[40]
A. Wakif, M. Qasim, M. I. Afridi, S. Saleem, M. M. Al-Qarni, Numerical examination of the entropic energy harvesting in a magnetohydrodynamic dissipative flow of Stokes' second problem: utilization of the gear-generalized differential quadrature method, Journal of Non-Equilibrium Thermodynamics 44(4) (2019) 385-403.
DOI: 10.1515/jnet-2018-0099
Google Scholar
[41]
S. Marzougui, F. Mebarek-Oudina, A. Assia, M. Magherbi, Z. Shah, K. Ramesh, Entropy generation on magneto-convective flow of copper–water nanofluid in a cavity with chamfers, Journal of Thermal Analysis and Calorimetry (2020) 1-12.
DOI: 10.1007/s10973-020-09662-3
Google Scholar
[42]
A. Cemal Eringen, Theory of micropolar fluids, Journal of Mathematics and Mechanics 16(1) (1966) 1-18.
Google Scholar
[43]
G. Ahmadi, Self-similar solution of in compressible micropolar boundary layer flow over a semi-infinite plate, International Journal of Engineering Science 14(7) (1976) 639-646.
DOI: 10.1016/0020-7225(76)90006-9
Google Scholar
[44]
K. K. Sankara, L. T. Watson, Micropolar flow past a stretching sheet, Zeitschrift für angewandte Mathematik und Physik 36(6) (1985) 845-853.
DOI: 10.1007/bf00944898
Google Scholar
[45]
Alizadeh, M., Dogonchi, A. S., & Ganji, D. D. (2018). Micropolar nanofluid flow and heat transfer between penetrable walls in the presence of thermal radiation and magnetic field, Case Studies in Thermal Engineering 12, 319-332.
DOI: 10.1016/j.csite.2018.05.002
Google Scholar
[46]
D. Srinivasacharya, K. H. Bindu, Entropy generation in a micropolar fluid flow through an inclined channel with slip and convective boundary conditions, Energy, 91 (2015) 72-83.
DOI: 10.1016/j.energy.2015.08.014
Google Scholar
[47]
D. Srinivasacharya, K. H. Bindu, Entropy generation in a micropolar fluid flow through an inclined channel, Alexandria Engineering Journal 55(2) (2016) 973-982.
DOI: 10.1016/j.aej.2016.02.027
Google Scholar
[48]
J. Srinivas, J. R. Murthy, A. J. Chamkha, Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using HAM, International Journal of Numerical Methods for Heat & Fluid Flow 26(3/4) (2016) 1027-1049.
DOI: 10.1108/hff-09-2015-0354
Google Scholar
[49]
L. Animasaun, O. K. Koriko, New similarity solution of micropolar fluid flow problem over an uhspr in the presence of quartic kind of autocatalytic chemical reaction. Frontiers in Heat and Mass Transfer (2017) 8.
DOI: 10.5098/hmt.8.26
Google Scholar
[50]
M. Madhu, N. Kishan, MHD boundary-layer flow of a non-Newtonian nanofluid past a stretching sheet with a heat source/sink, Journal of Applied Mechanics and Technical Physics 57(5) (2016) 908-915.
DOI: 10.1134/s0021894416050199
Google Scholar
[51]
N. A. Shah, I. L. Animasaun, R. O. Ibraheem, H. A. Babatunde, N. Sandeep, I. Pop, Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces, Journal of Molecular liquids 249 (2018). 980-990.
DOI: 10.1016/j.molliq.2017.11.042
Google Scholar