Effect of Fin Inclination Angel on Heat Transfer Improvement in an Annular Space of a Rotor Stator

Article Preview

Abstract:

The present work deals with the numerical investigation of forced convection flow and heat transfer in a finned concentric annulus. The outer cylinder is axially finned while the rotating inner cylinder has a smooth surface. Our research focus on the impact of the fin inclination angle on heat transfer enhancement in rotating annular channels. Tests were carried out for different geometrical configurations using fins with inclined angle (α = 30°, 60°, 90° and 120°). Numerical study is based on effective Reynolds number and Taylor number. The results obtained using the code ANSYS-Fluent with SST k-ω turbulence model show a good agreement between the experimental and the numerical results. In the presence of rotational flow (Ta = 1.14 × 106), the results indicate that α =120° is the optimal case which improves significantly the heat and mass transfer inside the finned channel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-122

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.N. Lee, Minkowycz, W. Heat transfer characteristics of the annulus of two coaxial cylinders with one cylinder rotating, International Journal of Heat and Mass Transfer. 32 (1989) 711-72.

DOI: 10.1016/0017-9310(89)90218-4

Google Scholar

[2] M. Molki, K. Astill, E. Leal, Convective heat-mass transfer in the entrance region of a concentric annulus having a rotating inner cylinder, International Journal of Heat and Fluid Flow. 11(1990) 120-128. http://dx.doi.org/10.1016/0142-727X(90)90005-V.

DOI: 10.1016/0142-727x(90)90005-v

Google Scholar

[3] J.M. Lopez, F. Marques, M. Avila, Conductive and convective heat transfer in fluid flows between differentially heated and rotating cylinders, International Journal of Heat and Mass Transfer. 90 (2015) 959-967. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.07.026.

DOI: 10.1016/j.ijheatmasstransfer.2015.07.026

Google Scholar

[4] W. Wang, B.W. Li, Effects of optical parameters on fluid flow and heat transfer of participating fluid between two vertical coaxial rotating cylinders, International Journal of Heat and Mass Transfer. 90 (2015) 167-179. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.06.045.

DOI: 10.1016/j.ijheatmasstransfer.2015.06.045

Google Scholar

[5] S. Grossmann, D. Lohse, C. Sun, High-Reynolds Number Taylor-Couette Turbulence, Annual review of fluid mechanics. 48 (2016) 53-80. http://dx.doi.org/10.1146/annurev-fluid-122414-034353.

DOI: 10.1146/annurev-fluid-122414-034353

Google Scholar

[6] Z. Zhou, W.T. Wu, M. Massoudi, Fully developed flow of a drilling fluid between two rotating cylinders, Appl. Math. Comput. 281 (2016) 266–277. http://dx.doi.org/10.1016/j.amc.2016.01.059.

DOI: 10.1016/j.amc.2016.01.059

Google Scholar

[7] K.M. Becker, J. Kaye, Measurements of adiabatic flow in an annulus with an inner rotating cylinder, Journal of Heat Transfer. (1962) 97-105.

DOI: 10.1115/1.3684335

Google Scholar

[8] F. Tachibana, S. Fukui, Convective heat transfer of the rotational and axial flow between two concentric cylinders", Bulletin of JSME. 7(1964). http://dx.doi.org/10.1299/jsme1958.7.385.

DOI: 10.1299/jsme1958.7.385

Google Scholar

[9] Y.N. Lee, W.J. Minkowycz, Heat transfer characteristics of the annulus of two-coaxial cylinders with one cylinder rotating, International Journal of Heat and Mass Transfer. 32 (1989) 711-722.

DOI: 10.1016/0017-9310(89)90218-4

Google Scholar

[10] S. Poncet, S.Haddadi, S. Viazzo, Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system, Int. J. Heat Fluid Flow. 32 (2011) 128-144. http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.08.003.

DOI: 10.1016/j.ijheatfluidflow.2010.08.003

Google Scholar

[11] J.M. Jalil, A.J.O. Hanfash, M.R. Abdul-Mutaleb, Experimental and numerical study of axial turbulent fluid flow and heat transfer in a rotating annulus, Arab.  J. Sci. Eng. 41 (2016) 1857-1865. http://dx.doi.org/10.1007/s13369-015-1909-1.

DOI: 10.1007/s13369-015-1909-1

Google Scholar

[12] C. Gazley, Heat transfer characteristics of rotating and axial flow between concentric cylinders, Trans. ASME, J. Heat Transfer. 114 (1992) 589-597.

DOI: 10.1115/1.4012257

Google Scholar

[13] S. R.M. Gardiner, R.H. Sabersky, Heat transfer in an annular gap, International Journal of Heat and Mass Transfer. 21 (1978) 1459-1466. http://dx.doi.org/10.1016/0017-9310(78)90002-9.

DOI: 10.1016/0017-9310(78)90002-9

Google Scholar

[14] M. Bouafia, Y. Bertin, J.B. Saulnier, P. Robert, Analyse expérimentale des transferts de chaleur en espace annulaire étroit et rainuré avec cylindre intérieur tournant, International Journal of Heat and Mass Transfer. 41(1998) 1279-1291. http://dx.doi.org/10.1016/S0017-9310(97)00317-7.

DOI: 10.1016/s0017-9310(97)00317-7

Google Scholar

[15] I. Peres, A. Ziouchi, Y. Bertin, Characterization of heat exchanges in a notched or smooth annular space with the rotating inner cylinder, SFT Congress. (1994) 170-177.

Google Scholar

[16] M. Bouafia, A. Ziouchi, Y. Bertin, J.B. Saulnier, Etude expérimentale et numérique des transferts de chaleur en espace annulaire sans débit axial et avec cylindre intérieur tournant, International Journal of Thermal Sciences. 38 (1999) 547-559. http://dx.doi.org/10.1016/S0035-3159(99)80035-X.

DOI: 10.1016/s0035-3159(99)80035-x

Google Scholar

[17] S. Neti, A.S. Warnock, E.K. Levy, K.S. Kannan, Computation of Laminar Heat Transfer in Distinguished Coils, Journal of Heat Transfer. 107 (1985) 575-582. http://dx.doi.org/10.1115/1.3247463.

DOI: 10.1115/1.3247463

Google Scholar

[18] E. Levy, S. Neti, G. Brown, F. Bayat, V. Kadambi, Laminar heat transfer and pressure drop in a rectangular duct rotating about a parallel axis, Journal of Heat Transfer. 108 (1986) 350-356. http://dx.doi.org/10.1115/1.3246928.

DOI: 10.1115/1.3246928

Google Scholar

[19] C.Y. Soong, W.M. Yan, Development of secondary flow and convective heat transfer in isothermal / iso- rectangular flow ducts rotating on a parallel axis, International Journal of Heat and Mass Transfer. 42 (1999) 497-510. http://dx.doi.org/10.1016/S0017-9310(98)00199-9.

DOI: 10.1016/s0017-9310(98)00199-9

Google Scholar

[20] C. Micallef, S.J. Pickering, K. Simmons, K. Bradley, Improvements in air flow in the end region of a large totally enclosed fan cooled induction motor, IEEE International Conference on Electrical Machines and Drives. (2005) 579-584. http://dx.doi.org/10.1109/IEMDC.2005.195781.

DOI: 10.1109/iemdc.2005.195781

Google Scholar

[21] T.M. Jeng, S.C.  Tzeng, C.H. Lin, Heat transfer enhancement of Taylor- Couette - Poiseuille flow in an annulus by longitudinal displacement ribs on the inner cylinder, International Journal of Heat and Mass Transfer. 50 (2007) 381-390. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.06.005.

DOI: 10.1016/j.ijheatmasstransfer.2006.06.005

Google Scholar

[22] E. Fenot, A. Dorignac, G. Giret, Lalizel, Convective heat transfer in the entry region of an annular channel with slotted rotating inner cylinder, Applied Thermal Engineering. 54(2013) 345-358. http://dx.doi.org/10.1016/j.applthermaleng.2012.10.039.

DOI: 10.1016/j.applthermaleng.2012.10.039

Google Scholar

[23] Y. Sommerer, G. Lauriat, Numerical study of steady forced convection in a grooved annulus using a design of experiments, Journal of Heat Transfer. 123 (2001) 837-848. http://dx.doi.org/10.1115/1.1388299.

DOI: 10.1115/1.1388299

Google Scholar

[24] A.Z. Dellil, A.  Azzi, Numerical investigation of the heat transfer in an annulus cylindrical space, MECHANIKA. 19 (2013) 25-32. http://dx.doi.org/10.5755/j01.mech.19.1.3613.

DOI: 10.5755/j01.mech.19.1.3613

Google Scholar

[25] N. Lancial, F. Torriano, F. Beaubert, S. Harmand, Taylor- Couette - Poiseuilleflow and heat transfer in an annular channel with a slotted rotor, International Journal of Thermal Sciences. 112 (2017) 92-103. http://dx.doi.org/10.1016/j.ijthermalsci.2016.09.022.

DOI: 10.1016/j.ijthermalsci.2016.09.022

Google Scholar

[26] X. Zhu, R. Ostilla-Mónico, R. Verzicco, D. Lohse, Direct numerical simulation of Taylor-Couette flow with grooved walls: torque scaling and flow structure, Journal of Fluid Mechanics. 794 (2016) 746-774. http://dx.doi.org/10.1017/jfm.2016.179.

DOI: 10.1017/jfm.2016.179

Google Scholar

[27] Y. Attou, A.Z. Dellil, A. Meghdir, Impact of the grooves on the enhancement of heat transfer in an annular space of a rotor-stator, International Journal of Heat and Technology. 36 (2018) 1283-1291. https://doi.org/10.18280/ijht.360417.

DOI: 10.18280/ijht.360417

Google Scholar

[28] A. Nouri-Borujerdi, M.E. Nakhchi, Friction factor and Nusselt number in annular flows with smooth and slotted surface, Heat and Mass Transfer. 55 (2018) 645-653. http://dx.doi.org/10.1007/s00231-018-2445-9.

DOI: 10.1007/s00231-018-2445-9

Google Scholar

[29] A. Nouri-Borujerdi, M.E. Nakhchi, Experimental study of convective heat transfer in the annulus of an annulus with an external grooved surface, Exp Thermal Fluid Sci. 98(2018) 557-562. https://doi.org/10.1016/j.expthermflusci.2018.06.025.

DOI: 10.1016/j.expthermflusci.2018.06.025

Google Scholar

[30] A. Nouri-Borujerdi, M.E. Nakhchi, Optimization of the heat transfer coefficient and pressure drop of Taylor- Couette - Poiseuille flows between an inner and outer roll cylinder and an outer grooved stationary cylinder, International Journal of Heat and Mass Transfer. 108 (2017) 1449 1459. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.01.014.

DOI: 10.1016/j.ijheatmasstransfer.2017.01.014

Google Scholar

[31] A. Nouri-Borujerdi, M.E. Nakhchi, Prediction of local shear stress and heat transfer between internal rotating cylinder and longitudinal cavities on stationary cylinder with various shapes, International Journal of Thermal Sciences. 138 (2019) 512-520. https://doi.org/10.1016/j.ijthermalsci.2019.01.016.

DOI: 10.1016/j.ijthermalsci.2019.01.016

Google Scholar

[32] H. Laidoudi, H. Ameur, Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: Effect of various operating conditions, Thermal Science and Engineering Progress. 20 (2020) 1-15. https://doi.org/10.1016/j.tsep.2020.100731.

DOI: 10.1016/j.tsep.2020.100731

Google Scholar

[33] H. Laidoudi, The role of concave walls of inner cylinder on natural convection in annular space, Acta Mechanica Malaysia, 3 (2020) 24-28. http://doi.org/10.26480/amm.02.2020.24.28.

DOI: 10.26480/amm.02.2020.24.28

Google Scholar

[34] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal. 32 (1994) 1598-1605. http://dx.doi.org/10.2514/3.12149.

DOI: 10.2514/3.12149

Google Scholar

[35] D.C. Wilcox, Turbulence Modeling for CFD. DCW Industries, third ed., (2006).

Google Scholar

[36] J.E. Bardina, P.G. Huang, T.J. Coakley, Turbulence Modeling Validation, Testing and Development. NASA Technical Memorandum (1997).

Google Scholar