[1]
Y.N. Lee, Minkowycz, W. Heat transfer characteristics of the annulus of two coaxial cylinders with one cylinder rotating, International Journal of Heat and Mass Transfer. 32 (1989) 711-72.
DOI: 10.1016/0017-9310(89)90218-4
Google Scholar
[2]
M. Molki, K. Astill, E. Leal, Convective heat-mass transfer in the entrance region of a concentric annulus having a rotating inner cylinder, International Journal of Heat and Fluid Flow. 11(1990) 120-128. http://dx.doi.org/10.1016/0142-727X(90)90005-V.
DOI: 10.1016/0142-727x(90)90005-v
Google Scholar
[3]
J.M. Lopez, F. Marques, M. Avila, Conductive and convective heat transfer in fluid flows between differentially heated and rotating cylinders, International Journal of Heat and Mass Transfer. 90 (2015) 959-967. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.07.026.
DOI: 10.1016/j.ijheatmasstransfer.2015.07.026
Google Scholar
[4]
W. Wang, B.W. Li, Effects of optical parameters on fluid flow and heat transfer of participating fluid between two vertical coaxial rotating cylinders, International Journal of Heat and Mass Transfer. 90 (2015) 167-179. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.06.045.
DOI: 10.1016/j.ijheatmasstransfer.2015.06.045
Google Scholar
[5]
S. Grossmann, D. Lohse, C. Sun, High-Reynolds Number Taylor-Couette Turbulence, Annual review of fluid mechanics. 48 (2016) 53-80. http://dx.doi.org/10.1146/annurev-fluid-122414-034353.
DOI: 10.1146/annurev-fluid-122414-034353
Google Scholar
[6]
Z. Zhou, W.T. Wu, M. Massoudi, Fully developed flow of a drilling fluid between two rotating cylinders, Appl. Math. Comput. 281 (2016) 266–277. http://dx.doi.org/10.1016/j.amc.2016.01.059.
DOI: 10.1016/j.amc.2016.01.059
Google Scholar
[7]
K.M. Becker, J. Kaye, Measurements of adiabatic flow in an annulus with an inner rotating cylinder, Journal of Heat Transfer. (1962) 97-105.
DOI: 10.1115/1.3684335
Google Scholar
[8]
F. Tachibana, S. Fukui, Convective heat transfer of the rotational and axial flow between two concentric cylinders", Bulletin of JSME. 7(1964). http://dx.doi.org/10.1299/jsme1958.7.385.
DOI: 10.1299/jsme1958.7.385
Google Scholar
[9]
Y.N. Lee, W.J. Minkowycz, Heat transfer characteristics of the annulus of two-coaxial cylinders with one cylinder rotating, International Journal of Heat and Mass Transfer. 32 (1989) 711-722.
DOI: 10.1016/0017-9310(89)90218-4
Google Scholar
[10]
S. Poncet, S.Haddadi, S. Viazzo, Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system, Int. J. Heat Fluid Flow. 32 (2011) 128-144. http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.08.003.
DOI: 10.1016/j.ijheatfluidflow.2010.08.003
Google Scholar
[11]
J.M. Jalil, A.J.O. Hanfash, M.R. Abdul-Mutaleb, Experimental and numerical study of axial turbulent fluid flow and heat transfer in a rotating annulus, Arab. J. Sci. Eng. 41 (2016) 1857-1865. http://dx.doi.org/10.1007/s13369-015-1909-1.
DOI: 10.1007/s13369-015-1909-1
Google Scholar
[12]
C. Gazley, Heat transfer characteristics of rotating and axial flow between concentric cylinders, Trans. ASME, J. Heat Transfer. 114 (1992) 589-597.
DOI: 10.1115/1.4012257
Google Scholar
[13]
S. R.M. Gardiner, R.H. Sabersky, Heat transfer in an annular gap, International Journal of Heat and Mass Transfer. 21 (1978) 1459-1466. http://dx.doi.org/10.1016/0017-9310(78)90002-9.
DOI: 10.1016/0017-9310(78)90002-9
Google Scholar
[14]
M. Bouafia, Y. Bertin, J.B. Saulnier, P. Robert, Analyse expérimentale des transferts de chaleur en espace annulaire étroit et rainuré avec cylindre intérieur tournant, International Journal of Heat and Mass Transfer. 41(1998) 1279-1291. http://dx.doi.org/10.1016/S0017-9310(97)00317-7.
DOI: 10.1016/s0017-9310(97)00317-7
Google Scholar
[15]
I. Peres, A. Ziouchi, Y. Bertin, Characterization of heat exchanges in a notched or smooth annular space with the rotating inner cylinder, SFT Congress. (1994) 170-177.
Google Scholar
[16]
M. Bouafia, A. Ziouchi, Y. Bertin, J.B. Saulnier, Etude expérimentale et numérique des transferts de chaleur en espace annulaire sans débit axial et avec cylindre intérieur tournant, International Journal of Thermal Sciences. 38 (1999) 547-559. http://dx.doi.org/10.1016/S0035-3159(99)80035-X.
DOI: 10.1016/s0035-3159(99)80035-x
Google Scholar
[17]
S. Neti, A.S. Warnock, E.K. Levy, K.S. Kannan, Computation of Laminar Heat Transfer in Distinguished Coils, Journal of Heat Transfer. 107 (1985) 575-582. http://dx.doi.org/10.1115/1.3247463.
DOI: 10.1115/1.3247463
Google Scholar
[18]
E. Levy, S. Neti, G. Brown, F. Bayat, V. Kadambi, Laminar heat transfer and pressure drop in a rectangular duct rotating about a parallel axis, Journal of Heat Transfer. 108 (1986) 350-356. http://dx.doi.org/10.1115/1.3246928.
DOI: 10.1115/1.3246928
Google Scholar
[19]
C.Y. Soong, W.M. Yan, Development of secondary flow and convective heat transfer in isothermal / iso- rectangular flow ducts rotating on a parallel axis, International Journal of Heat and Mass Transfer. 42 (1999) 497-510. http://dx.doi.org/10.1016/S0017-9310(98)00199-9.
DOI: 10.1016/s0017-9310(98)00199-9
Google Scholar
[20]
C. Micallef, S.J. Pickering, K. Simmons, K. Bradley, Improvements in air flow in the end region of a large totally enclosed fan cooled induction motor, IEEE International Conference on Electrical Machines and Drives. (2005) 579-584. http://dx.doi.org/10.1109/IEMDC.2005.195781.
DOI: 10.1109/iemdc.2005.195781
Google Scholar
[21]
T.M. Jeng, S.C. Tzeng, C.H. Lin, Heat transfer enhancement of Taylor- Couette - Poiseuille flow in an annulus by longitudinal displacement ribs on the inner cylinder, International Journal of Heat and Mass Transfer. 50 (2007) 381-390. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.06.005.
DOI: 10.1016/j.ijheatmasstransfer.2006.06.005
Google Scholar
[22]
E. Fenot, A. Dorignac, G. Giret, Lalizel, Convective heat transfer in the entry region of an annular channel with slotted rotating inner cylinder, Applied Thermal Engineering. 54(2013) 345-358. http://dx.doi.org/10.1016/j.applthermaleng.2012.10.039.
DOI: 10.1016/j.applthermaleng.2012.10.039
Google Scholar
[23]
Y. Sommerer, G. Lauriat, Numerical study of steady forced convection in a grooved annulus using a design of experiments, Journal of Heat Transfer. 123 (2001) 837-848. http://dx.doi.org/10.1115/1.1388299.
DOI: 10.1115/1.1388299
Google Scholar
[24]
A.Z. Dellil, A. Azzi, Numerical investigation of the heat transfer in an annulus cylindrical space, MECHANIKA. 19 (2013) 25-32. http://dx.doi.org/10.5755/j01.mech.19.1.3613.
DOI: 10.5755/j01.mech.19.1.3613
Google Scholar
[25]
N. Lancial, F. Torriano, F. Beaubert, S. Harmand, Taylor- Couette - Poiseuilleflow and heat transfer in an annular channel with a slotted rotor, International Journal of Thermal Sciences. 112 (2017) 92-103. http://dx.doi.org/10.1016/j.ijthermalsci.2016.09.022.
DOI: 10.1016/j.ijthermalsci.2016.09.022
Google Scholar
[26]
X. Zhu, R. Ostilla-Mónico, R. Verzicco, D. Lohse, Direct numerical simulation of Taylor-Couette flow with grooved walls: torque scaling and flow structure, Journal of Fluid Mechanics. 794 (2016) 746-774. http://dx.doi.org/10.1017/jfm.2016.179.
DOI: 10.1017/jfm.2016.179
Google Scholar
[27]
Y. Attou, A.Z. Dellil, A. Meghdir, Impact of the grooves on the enhancement of heat transfer in an annular space of a rotor-stator, International Journal of Heat and Technology. 36 (2018) 1283-1291. https://doi.org/10.18280/ijht.360417.
DOI: 10.18280/ijht.360417
Google Scholar
[28]
A. Nouri-Borujerdi, M.E. Nakhchi, Friction factor and Nusselt number in annular flows with smooth and slotted surface, Heat and Mass Transfer. 55 (2018) 645-653. http://dx.doi.org/10.1007/s00231-018-2445-9.
DOI: 10.1007/s00231-018-2445-9
Google Scholar
[29]
A. Nouri-Borujerdi, M.E. Nakhchi, Experimental study of convective heat transfer in the annulus of an annulus with an external grooved surface, Exp Thermal Fluid Sci. 98(2018) 557-562. https://doi.org/10.1016/j.expthermflusci.2018.06.025.
DOI: 10.1016/j.expthermflusci.2018.06.025
Google Scholar
[30]
A. Nouri-Borujerdi, M.E. Nakhchi, Optimization of the heat transfer coefficient and pressure drop of Taylor- Couette - Poiseuille flows between an inner and outer roll cylinder and an outer grooved stationary cylinder, International Journal of Heat and Mass Transfer. 108 (2017) 1449 1459. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.01.014.
DOI: 10.1016/j.ijheatmasstransfer.2017.01.014
Google Scholar
[31]
A. Nouri-Borujerdi, M.E. Nakhchi, Prediction of local shear stress and heat transfer between internal rotating cylinder and longitudinal cavities on stationary cylinder with various shapes, International Journal of Thermal Sciences. 138 (2019) 512-520. https://doi.org/10.1016/j.ijthermalsci.2019.01.016.
DOI: 10.1016/j.ijthermalsci.2019.01.016
Google Scholar
[32]
H. Laidoudi, H. Ameur, Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: Effect of various operating conditions, Thermal Science and Engineering Progress. 20 (2020) 1-15. https://doi.org/10.1016/j.tsep.2020.100731.
DOI: 10.1016/j.tsep.2020.100731
Google Scholar
[33]
H. Laidoudi, The role of concave walls of inner cylinder on natural convection in annular space, Acta Mechanica Malaysia, 3 (2020) 24-28. http://doi.org/10.26480/amm.02.2020.24.28.
DOI: 10.26480/amm.02.2020.24.28
Google Scholar
[34]
F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal. 32 (1994) 1598-1605. http://dx.doi.org/10.2514/3.12149.
DOI: 10.2514/3.12149
Google Scholar
[35]
D.C. Wilcox, Turbulence Modeling for CFD. DCW Industries, third ed., (2006).
Google Scholar
[36]
J.E. Bardina, P.G. Huang, T.J. Coakley, Turbulence Modeling Validation, Testing and Development. NASA Technical Memorandum (1997).
Google Scholar