[1]
D. Moore, D. Newport, V. Egan, V. Lacarac, Ventilation and internal structure effects on naturally induced flows in a static aircraft wing, Applied Thermal Engineering. 32 (2012) 49-58.
DOI: 10.1016/j.applthermaleng.2011.08.018
Google Scholar
[2]
M. Moghimi, H. Mirgolbabaei, Me. Miansari, Mo. Miansari, Natural convection in rectangular enclosures heated from below and cooled from above, Australian Journal of Basic and Applied Sciences. 3 (4) (2009) 4618–4623.
Google Scholar
[3]
H. Turkoglu, N. Yucel, Effects of heater and cooler location on natural convection in square cavities, Numerical Heat Transfer. 27 (1995) 351–358.
DOI: 10.1080/10407789508913705
Google Scholar
[4]
A. Horibe, R. Shimoyama, N. Haruki, A. Sanada, Experimental study of flow and heat transfer characteristics of natural convection in an enclosure with horizontal parallel heated plates, International Journal of Heat and Mass Transfer. 55 (2012) 7072–7078.
DOI: 10.1016/j.ijheatmasstransfer.2012.07.021
Google Scholar
[5]
O. Turan, N. Chakraborty, R. Poole, Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls, Journal of Non- Newtonian Fluid Mechanics. 165 (2010) 901–913.
DOI: 10.1016/j.jnnfm.2010.04.013
Google Scholar
[6]
S. Tasnim, S. Mahmud, P. Das, Effect of aspect ratio and eccentricity on heat transfer from a cylinder in a cavity, International Journal of Numerical Methods for Heat and Fluid Flow. 12 (7) (2002) 855–869.
DOI: 10.1108/09615530210443061
Google Scholar
[7]
A.K. Hussein, Computational analysis of natural convection in a parallelogrammic cavity with a hot concentric circular cylinder moving at different vertical locations, International Communications in Heat and Mass Transfer. 46 (2013) 126–133.
DOI: 10.1016/j.icheatmasstransfer.2013.05.008
Google Scholar
[8]
GH.R. Kefayati, H. Tang. Lattice Boltzmann simulation of viscoplastic fluids on natural convection in an inclined enclosure with inner cold circular/elliptical cylinders (Part I: One cylinder), International Journal of Heat and Mass Transfer. xxx (2018) xxx–xxx.
DOI: 10.1016/j.ijheatmasstransfer.2018.01.139
Google Scholar
[9]
M.H. Matin, W.A. Khan, Laminar natural convection of non-Newtonian power-law fluids between concentric circular cylinders, International Communications in Heat and Mass Transfer. 43 (2013) 112–121.
DOI: 10.1016/j.icheatmasstransfer.2013.02.006
Google Scholar
[10]
H. Laidoudi, M. Helmaoui, M. Bouzit, A.Ghenaim., 2020, Natural convection of Newtonian fluids between two concentric cylinders of a special cross-sectional form. Thermal Science. 00, 00–00. 10.2298/TSCI200201190L.
DOI: 10.2298/tsci200201190l
Google Scholar
[11]
H. Laidoudi, Buoyancy-driven flow in annular space from two circular cylinders in tandem arrangement, Metall Mater Eng. 26 (2020) 87-102.
DOI: 10.30544/481
Google Scholar
[12]
S.A. Nadaa, M.A. Saida, Effects of fins geometries, arrangements, dimensions and numbers on natural convection heat transfer characteristics in finned-horizontal annulus, International Journal of Thermal Sciences. 137 (2019) 121–137.
DOI: 10.1016/j.ijthermalsci.2018.11.026
Google Scholar
[13]
W. Zhang, Y. Wei, H.S. Dou, Z. Zhu. Transient behaviors of mixed convection in a square enclosure with an inner impulsively rotating circular cylinder, International Communications in Heat and Mass Transfer. 98 (2018) 143–154.
DOI: 10.1016/j.icheatmasstransfer.2018.08.016
Google Scholar
[14]
E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, International Communications in Heat and Mass Transfer. 35 (2008) 657–665.
DOI: 10.1016/j.icheatmasstransfer.2007.11.004
Google Scholar
[15]
F.Selimefendigil, H. F. Oztop, O. Mahian, Effects of a partially conductive partition in MHD conjugate convection and entropy generation for a horizontal annulus, Journal of Thermal Analysis and Calorimetry. 139 (2) (2020) 1537–1542.
DOI: 10.1007/s10973-019-08532-x
Google Scholar
[16]
A. Shadlaghani, M. Farzaneh, M. Shahabadi, M.R. Tavakoli, Safaei, M.R., I.Mazinani, Numerical investigation of serrated fins on natural convection from concentric and eccentric annuli with different cross sections, Journal of Thermal Analysis and Calorimetry. 135 (02) (2019) 1429–1442.
DOI: 10.1007/s10973-018-7542-y
Google Scholar
[17]
S. Touzani, A. Idrissi, A. Cheddadi, M.T. Ouazzani, Numerical Study of Laminar Natural Convection in a Finned Annulus: Low Isothermal Blocks Positions, Journal of Engineering Physics and Thermophysics. 92 (4) (2019) 1064–1071.
DOI: 10.1007/s10891-019-02021-6
Google Scholar
[18]
D. Dey, A.S. Khound, Free Convective Oldroyd Fluid Flow through an Annulus under Transverse Magnetic Field Using Modified Bessel Functions, Int J Heat Technology. 37(1) (2019) 41–47.
DOI: 10.18280/ijht.370105
Google Scholar
[19]
H. Mihoubi, B. Bouderah, T. Tayebi, Improvement of Free Convection Heat Transfer in a Concentric Cylindrical Annulus Heat Exchanger Using Nanofluid, Mathematical Modelling of Engineering Problems. 6(4) (2019) 566–574. 20] F. Mebarek-Oudina, R. Bessaïh, Numerical simulation of natural convection heat transfer of copper-water nanofluid in a vertical cylindrical annulus with heat sources, Thermophysics and Aeromechanics. 26(3) (2019) 325–334.
DOI: 10.1134/s0869864319030028
Google Scholar
[21]
F. Mebarek-Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer-Asian Research. 48 (1) (2018) 135–150.
DOI: 10.1002/htj.21375
Google Scholar
[22]
W. Al-Kouz1, A. Alshare, A. Alkhalidi, Two dimensional analysis of low pressure flows in the annulus region between two concentric cylinders, SpringerPlus. 5(1) (2016) 529.
DOI: 10.1186/s40064-016-2140-6
Google Scholar
[23]
M. Arbaban, M.R Salimpour, M. R, Enhancement of laminar natural convective heat transfer in concentric annuli with radial fins using nanofluids, Heat and Mass Transfer. 51 (3) (2015) 353–363.
DOI: 10.1007/s00231-014-1380-7
Google Scholar
[24]
S. Marzougui, Fateh Mebarek-Oudina, A. Assia, M. Magherbi, Zahir Shah, K. Ramesh, Entropy generation on magneto-convective flow of copper–water nanofluid in a cavity with chamfers. Journal of Thermal Analysis and Calorimetry, 00(2020) 00-00. https://doi.org/10.1007/s10973-020-09662-3.
DOI: 10.1007/s10973-020-09662-3
Google Scholar
[25]
J. Raza, F. Mebarek-Oudina, P. Ram, S. Sharma, MHD Flow of Non-Newtonian Molybdenum Disulfide Nanofluid in a Converging/Diverging Channel with Rosseland Radiation, Defect and Diffusion Forum, 401, (2020) 92-106.
DOI: 10.4028/www.scientific.net/ddf.401.92
Google Scholar
[26]
H. Laidoudi, M. Helmaoui, Enhancement of natural convection heat transfer in concentric annular space using inclined elliptical cylinder, Journal of Naval Architecture and Marine Engineering, 17 (2) (2020), 89-99.
DOI: 10.3329/jname.v17i2.44991
Google Scholar
[27]
H. Laidoudi, H. Ameur, Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: Effect of various operating conditions, Thermal Science and Engineering Progress, 20(2020) 100731.
DOI: 10.1016/j.tsep.2020.100731
Google Scholar
[28]
F. Mebarek-Oudina, A. Aissa, B. Mahanthesh, H. F. Öztop, Heat Transport of Magnetized Newtonian Nanoliquids in an Annular Space between Porous Vertical Cylinders with Discrete Heat Source, International Communications in Heat and Mass Transfer, 117, (2020) 104737.
DOI: 10.1016/j.icheatmasstransfer.2020.104737
Google Scholar
[29]
A.Wakif, I.L. Animasaun, P.V. Satya Narayana, G. Sarojamma, Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids, Chinese Journal of Physics, 68 (2020) 293-307.
DOI: 10.1016/j.cjph.2019.12.002
Google Scholar
[30]
U. Khan, A. Zaib, Dumitru Baleanu, M. Sheikholeslami, Abderrahim Wakif. Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction, Heliyon 6 (2020) e04565.
DOI: 10.1016/j.heliyon.2020.e04565
Google Scholar