Natural Convection from Two Hot Semi-Circular Cylinder Confined in Cold Circular Cylinder

Article Preview

Abstract:

Numerical simulations were performed to study the pertinent parameters of natural convection in annular space. The studied geometry consists of two semi-circular cylinders of hot walls confined in cold cavity of circular cross-sectional form. The simulations were done by solving numerically the governing equations via the commercial software ANSYS-CFX. The results showed that this new form of inner cylinders is suitable for insulating applications. The pertinent parameters were selected for this work were: Prandtl number (Pr = 0.71 to 1000) and Rayleigh number (Ra = 103, 104 and 105).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-66

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Moore, D. Newport, V. Egan, V. Lacarac, Ventilation and internal structure effects on naturally induced flows in a static aircraft wing, Applied Thermal Engineering. 32 (2012) 49-58.

DOI: 10.1016/j.applthermaleng.2011.08.018

Google Scholar

[2] M. Moghimi, H. Mirgolbabaei, Me. Miansari, Mo. Miansari, Natural convection in rectangular enclosures heated from below and cooled from above, Australian Journal of Basic and Applied Sciences. 3 (4) (2009) 4618–4623.

Google Scholar

[3] H. Turkoglu, N. Yucel, Effects of heater and cooler location on natural convection in square cavities, Numerical Heat Transfer. 27 (1995) 351–358.

DOI: 10.1080/10407789508913705

Google Scholar

[4] A. Horibe, R. Shimoyama, N. Haruki, A. Sanada, Experimental study of flow and heat transfer characteristics of natural convection in an enclosure with horizontal parallel heated plates, International Journal of Heat and Mass Transfer. 55 (2012) 7072–7078.

DOI: 10.1016/j.ijheatmasstransfer.2012.07.021

Google Scholar

[5] O. Turan, N. Chakraborty, R. Poole, Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls, Journal of Non- Newtonian Fluid Mechanics. 165 (2010) 901–913.

DOI: 10.1016/j.jnnfm.2010.04.013

Google Scholar

[6] S. Tasnim, S. Mahmud, P. Das, Effect of aspect ratio and eccentricity on heat transfer from a cylinder in a cavity, International Journal of Numerical Methods for Heat and Fluid Flow. 12 (7) (2002) 855–869.

DOI: 10.1108/09615530210443061

Google Scholar

[7] A.K. Hussein, Computational analysis of natural convection in a parallelogrammic cavity with a hot concentric circular cylinder moving at different vertical locations, International Communications in Heat and Mass Transfer. 46 (2013) 126–133.

DOI: 10.1016/j.icheatmasstransfer.2013.05.008

Google Scholar

[8] GH.R. Kefayati, H. Tang. Lattice Boltzmann simulation of viscoplastic fluids on natural convection in an inclined enclosure with inner cold circular/elliptical cylinders (Part I: One cylinder), International Journal of Heat and Mass Transfer. xxx (2018) xxx–xxx.

DOI: 10.1016/j.ijheatmasstransfer.2018.01.139

Google Scholar

[9] M.H. Matin, W.A. Khan, Laminar natural convection of non-Newtonian power-law fluids between concentric circular cylinders, International Communications in Heat and Mass Transfer. 43 (2013) 112–121.

DOI: 10.1016/j.icheatmasstransfer.2013.02.006

Google Scholar

[10] H. Laidoudi, M. Helmaoui, M. Bouzit, A.Ghenaim., 2020, Natural convection of Newtonian fluids between two concentric cylinders of a special cross-sectional form. Thermal Science. 00, 00–00. 10.2298/TSCI200201190L.

DOI: 10.2298/tsci200201190l

Google Scholar

[11] H. Laidoudi, Buoyancy-driven flow in annular space from two circular cylinders in tandem arrangement, Metall Mater Eng. 26 (2020) 87-102.

DOI: 10.30544/481

Google Scholar

[12] S.A. Nadaa, M.A. Saida, Effects of fins geometries, arrangements, dimensions and numbers on natural convection heat transfer characteristics in finned-horizontal annulus, International Journal of Thermal Sciences. 137 (2019) 121–137.

DOI: 10.1016/j.ijthermalsci.2018.11.026

Google Scholar

[13] W. Zhang, Y. Wei, H.S. Dou, Z. Zhu. Transient behaviors of mixed convection in a square enclosure with an inner impulsively rotating circular cylinder, International Communications in Heat and Mass Transfer. 98 (2018) 143–154.

DOI: 10.1016/j.icheatmasstransfer.2018.08.016

Google Scholar

[14] E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, International Communications in Heat and Mass Transfer. 35 (2008) 657–665.

DOI: 10.1016/j.icheatmasstransfer.2007.11.004

Google Scholar

[15] F.Selimefendigil, H. F. Oztop, O. Mahian, Effects of a partially conductive partition in MHD conjugate convection and entropy generation for a horizontal annulus, Journal of Thermal Analysis and Calorimetry. 139 (2) (2020) 1537–1542.

DOI: 10.1007/s10973-019-08532-x

Google Scholar

[16] A. Shadlaghani, M. Farzaneh, M. Shahabadi, M.R. Tavakoli, Safaei, M.R., I.Mazinani, Numerical investigation of serrated fins on natural convection from concentric and eccentric annuli with different cross sections, Journal of Thermal Analysis and Calorimetry. 135 (02) (2019) 1429–1442.

DOI: 10.1007/s10973-018-7542-y

Google Scholar

[17] S. Touzani, A. Idrissi, A. Cheddadi, M.T. Ouazzani, Numerical Study of Laminar Natural Convection in a Finned Annulus: Low Isothermal Blocks Positions, Journal of Engineering Physics and Thermophysics. 92 (4) (2019) 1064–1071.

DOI: 10.1007/s10891-019-02021-6

Google Scholar

[18] D. Dey, A.S. Khound, Free Convective Oldroyd Fluid Flow through an Annulus under Transverse Magnetic Field Using Modified Bessel Functions, Int J Heat Technology. 37(1) (2019) 41–47.

DOI: 10.18280/ijht.370105

Google Scholar

[19] H. Mihoubi, B. Bouderah, T. Tayebi, Improvement of Free Convection Heat Transfer in a Concentric Cylindrical Annulus Heat Exchanger Using Nanofluid, Mathematical Modelling of Engineering Problems. 6(4) (2019) 566–574. 20] F. Mebarek-Oudina, R. Bessaïh, Numerical simulation of natural convection heat transfer of copper-water nanofluid in a vertical cylindrical annulus with heat sources, Thermophysics and Aeromechanics. 26(3) (2019) 325–334.

DOI: 10.1134/s0869864319030028

Google Scholar

[21] F. Mebarek-Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer-Asian Research. 48 (1) (2018) 135–150.

DOI: 10.1002/htj.21375

Google Scholar

[22] W. Al-Kouz1, A. Alshare, A. Alkhalidi, Two dimensional analysis of low pressure flows in the annulus region between two concentric cylinders, SpringerPlus. 5(1) (2016) 529.

DOI: 10.1186/s40064-016-2140-6

Google Scholar

[23] M. Arbaban, M.R Salimpour, M. R, Enhancement of laminar natural convective heat transfer in concentric annuli with radial fins using nanofluids, Heat and Mass Transfer. 51 (3) (2015) 353–363.

DOI: 10.1007/s00231-014-1380-7

Google Scholar

[24] S. Marzougui, Fateh Mebarek-Oudina, A. Assia, M. Magherbi, Zahir Shah, K. Ramesh, Entropy generation on magneto-convective flow of copper–water nanofluid in a cavity with chamfers. Journal of Thermal Analysis and Calorimetry, 00(2020) 00-00. https://doi.org/10.1007/s10973-020-09662-3.

DOI: 10.1007/s10973-020-09662-3

Google Scholar

[25] J. Raza,  F. Mebarek-Oudina, P. Ram, S. Sharma, MHD Flow of Non-Newtonian Molybdenum Disulfide Nanofluid in a Converging/Diverging Channel with Rosseland Radiation, Defect and Diffusion Forum, 401, (2020) 92-106.

DOI: 10.4028/www.scientific.net/ddf.401.92

Google Scholar

[26] H. Laidoudi, M. Helmaoui, Enhancement of natural convection heat transfer in concentric annular space using inclined elliptical cylinder, Journal of Naval Architecture and Marine Engineering, 17 (2) (2020), 89-99.

DOI: 10.3329/jname.v17i2.44991

Google Scholar

[27] H. Laidoudi, H. Ameur, Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: Effect of various operating conditions, Thermal Science and Engineering Progress, 20(2020) 100731.

DOI: 10.1016/j.tsep.2020.100731

Google Scholar

[28] F. Mebarek-Oudina, A. Aissa, B. Mahanthesh, H. F. Öztop, Heat Transport of Magnetized Newtonian Nanoliquids in an Annular Space between Porous Vertical Cylinders with Discrete Heat Source, International Communications in Heat and Mass Transfer, 117, (2020) 104737.

DOI: 10.1016/j.icheatmasstransfer.2020.104737

Google Scholar

[29] A.Wakif, I.L. Animasaun, P.V. Satya Narayana, G. Sarojamma, Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids, Chinese Journal of Physics, 68 (2020) 293-307.

DOI: 10.1016/j.cjph.2019.12.002

Google Scholar

[30] U. Khan, A. Zaib, Dumitru Baleanu, M. Sheikholeslami, Abderrahim Wakif. Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction, Heliyon 6 (2020) e04565.

DOI: 10.1016/j.heliyon.2020.e04565

Google Scholar