Numerical Investigation of Gas-Liquid Two-Phase Flows in a Cylindrical Channel

Article Preview

Abstract:

Two-phase flows are widely encountered in many natural phenomena and industrial processes. The presence of one or more interfaces between the two phases presents a major difficulty which makes the modeling and the simulation of this type of flow complex. This work consists in performing a three-dimensional numerical simulation of a two-phase Hydrogen-Water flow inside a horizontal cylindrical channel. The results are obtained in the form of velocity contours, enthalpy and pressures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-48

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes, Journal of Heat Transfer, 112(1) (1990) 219-228.

DOI: 10.1115/1.2910348

Google Scholar

[2] F. Mebarek-Oudina, R. Bessaïh, Numerical modeling of MHD stability in a cylindrical configuration, Journal of the Franklin Institute, 351(2) (2014) 667–681.

DOI: 10.1016/j.jfranklin.2012.11.004

Google Scholar

[3] F. Mebarek-Oudina, A. Aissa, B. Mahanthesh, and H.F. Öztop, Heat Transport of Magnetized Newtonian Nanoliquids in an Annular Space between Porous Vertical Cylinders with Discrete Heat Source, International Communications in Heat and Mass Transfer, 117 (2020) 104737. https://doi.org/10.1016/j.icheatmasstransfer.2020.104737.

DOI: 10.1016/j.icheatmasstransfer.2020.104737

Google Scholar

[4] J. Reza, F. Mebarek-Oudina, O. D. Makinde, MHD slip flow of Cu-kerosene nanofluid in a channel with stretching walls using 3-stage Lobatto IIIA formula. Defect and Diffusion Forum, 387 (2018) 51-62.

DOI: 10.4028/www.scientific.net/ddf.387.51

Google Scholar

[5] F. Mebarek-Oudina, O. D. Makinde, Numerical simulation of oscillatory MHD natural convection in cylindrical annulus: Prandtl number effect, Defect and Diffusion Forum, 387 (2018) 417-427.

DOI: 10.4028/www.scientific.net/ddf.387.417

Google Scholar

[6] M. Farhan, Z. Omar, F. Mebarek-Oudina, J.Raza, Z. Shah, R.V. Choudhari, O. D. Makinde, Implementation of one Step one Hybrid Block Method on Nonlinear Equation of the Circular Sector Oscillator, Computational Mathematics and Modeling, 31 (1) (2020) 116-132. https://doi.org/10.1007/s10598-020-09480-0.

DOI: 10.1007/s10598-020-09480-0

Google Scholar

[7] F. Mebarek-Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer-Asian Research 48(1)(2019) 135-147.

DOI: 10.1002/htj.21375

Google Scholar

[8] J. V. Ramana Murthy, J. Srinivas, K. S. Sai, Flow of immiscible micropolar fluids between two porous beds, Journal of Porous Media, 17 (4) (2014) 287-300.

DOI: 10.1615/jpormedia.v17.i4.20

Google Scholar

[9] J. Raza, F. Mebarek-Oudina and A. J. Chamkha, Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects, Multidiscipline Modeling in Materials and Structures (2019) http://dx.doi.org/10.1108/MMMS-07-2018-0133.

DOI: 10.1108/mmms-07-2018-0133

Google Scholar

[10] S. Marzougui, M. Bouabid, F. Mebarek-Oudina, N. Abu-Hamdeh, M. Magherbi, and K. Ramesh, A computational analysis of heat transport irreversibility phenomenon in a magnetized porous channel, International Journal of Numerical Methods for Heat & Fluid Flow, 2020, https://doi.org/10.1108/HFF-07-2020-0418.

DOI: 10.1108/hff-07-2020-0418

Google Scholar

[11] M. Abo-Dahab, M.A. Abdelhafez, F. Mebarek-Oudina and S. M. Bilal, MHD Casson Nanofluid Flow over Nonlinearly Heated Porous Medium in presence of Extending Surface effect with Suction/Injection, Indian Journal of Physics, 2021, https://doi.org/10.1007/s12648-020- 01923-z.

DOI: 10.1007/s12648-020-01923-z

Google Scholar

[12] S. S. Okoya, Flow, thermal criticality and transition of a reactive third-grade fluid in a pipe with Reynolds' model viscosity, Journal of Hydrodynamics, Ser. B, 28 (1) (2016) 84 – 94.

DOI: 10.1016/s1001-6058(16)60610-8

Google Scholar

[13] S. S. Okoya, Computational study of thermal influence in axial annular flow of a reactive third grade fluid with non-linear viscosity. Alexandria Engineering Journal, 58 (1)(2019)401 – 411.

DOI: 10.1016/j.aej.2019.01.001

Google Scholar

[14] F. Mebarek-Oudina, N. Keerthi Reddy and M. Sankar, Heat Source location Effects on Buoyant Convection of Nanofluids in an Annulus, Advances in Fluid Dynamics, Lecture Notes in Mechanical Engineering, (2021) 923-937. https://doi.org/10.1007/978-981-15-4308-1_70.

DOI: 10.1007/978-981-15-4308-1_70

Google Scholar

[15] S. Gourari, F. Mebarek-Oudina, O.D. Makinde, and I. Bouakkaz, Numerical Modeling of Heat Transfer in Cylindrical Annulus: Aspect Ratio Effect, Engineering Transactions, 23(1) (2020) 39-46.

Google Scholar

[16] M. Shah, M. Mirza, A new correlation for heat transfer during boiling flow through pipes, Ashrae Trans, 82(2) (1976) 66-86.

Google Scholar

[17] S. G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. Journal of Heat Transfer, 112(1) (1990) 219-228.

DOI: 10.1115/1.2910348

Google Scholar

[18] K. E. Gungor, R. H. S. Winterton, A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer, 29 (3) (1986) 351-358.

DOI: 10.1016/0017-9310(86)90205-x

Google Scholar

[19] A. E. Duckler, J. Fabre, Gas-liquid slug flow: Knots and loose ends, Multiphase Science And Technology, (1994).

Google Scholar

[20] C. Beguin, Modélisation des écoulements diphasiques : Amortissement, forces interfaciales et turbulence diphasique, Université de Montréal, (2010).

Google Scholar

[21] J.M. Delhaye. Jump conditions and entropy sources in two–phase systems, local instant formulation. International Journal of Multiphase Flow, 1(3) (1974) 395–409.

DOI: 10.1016/0301-9322(74)90012-3

Google Scholar

[22] Guillaume Prigent. Modélisation et simulation numérique d'écoulements diphasiques pour la microfluidique. Autre [cond-mat.other]. Université Paris Sud - Paris XI, 2013. Français. ffNNT: 2013PA112009ff. fftel-01059794f.

Google Scholar

[23] R. Byron Bird Warren, E. Stewart Edwin and N. Lightfoot, Transport Phenomena, 2nd edition, John Wiley & Sons, Inc (2002) USA - Chapters 2, Page 62.

Google Scholar

[24] F. Thomas, Advances in computational fluid dynamics (CFD) of 3-dimensional gas-liquid multiphase flows, ANSYS Germany GmbH, Otterfing, Germany, (2005).

Google Scholar

[25] Y. Yan, Y. Zu, Numerical simulation of bubbles deformation, flow, and coalescence in a microchannel under pseudo-nucleation conditions, Heat Transfer Eng. 32 (2011) 1182-119.

DOI: 10.1080/01457632.2011.562731

Google Scholar