[1]
P. Dutta, A. Beskok, T.C. Warburton, Electroosmotic flow control in complex micro geometries, J. Micro-electro-mech. Syst. 11 (1) (2002) 36–43.
DOI: 10.1115/imece2000-1148
Google Scholar
[2]
A. Ajdari, Transverse electrokinetic and microfluidic effects in micropatterned channels: lubrication analysis for slab geometries, Phys. Rev. E 65 (1) (2001)016301.
DOI: 10.1103/physreve.65.016301
Google Scholar
[3]
M. Takashima, The effect of rotation on electrohydrodynamic instability, Canadian J. Phy., 54 (1976) 342 – 347.
Google Scholar
[4]
O. K. Koriko, K. S. Adegbie, A. S. Oke and I. L. Animasaun, Exploration of Coriolis force on motion of air over the upper horizontal surface of a paraboloid of revolution, Physica Scripta 95(3)(2020), 035210.
DOI: 10.1088/1402-4896/abc19e
Google Scholar
[5]
G. Shit, A. Mondal, A. Sinha, P. Kundu, Effects of slip velocity on rotating electroosmotic flow in a slowly varying micro-channel, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489(2016) 249 – 255.
DOI: 10.1016/j.colsurfa.2015.10.036
Google Scholar
[6]
Z. Y. Xie, Y. J. Jian, Rotating electroosmotic flow of power-law fluids at high zeta potentials, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 461(2014) 231 – 239.
DOI: 10.1016/j.colsurfa.2014.07.051
Google Scholar
[7]
G. T. Adamu, A. M. Kwami, M. Abdulhameed, D. G. Yakubu, Effects of retardation time on non-Newtonian electro-osmatic flow in a micro-channel, Engineering fluid flows and Heat Transfer Analysis, 26(2020)39 – 52.
DOI: 10.4028/www.scientific.net/df.26.39
Google Scholar
[8]
Y. Jian, D. Si, L. Chang, Q. Liu, Transient rotating electro-magneto-hydrodynamic micopumps between two infinite micro-parallel plates, Chemical Engineering Science, 134 (2015)12 - 22.
DOI: 10.1016/j.ces.2015.04.036
Google Scholar
[9]
F. Mebarek-Oudina, A. Aissa, B. Mahanthesh, H. F. Oztop, Heat transport of magnetized Newtonian nanoliquids in an annular space between porous vertical cylinders with discrete heat source, Intern. Commun. In Heat Mass Transfer, 117 (2020)104737.
DOI: 10.1016/j.icheatmasstransfer.2020.104737
Google Scholar
[10]
S. X. Li, Y. J. Jian, Z.Y. Xie, Q.S. Liu, F.Q. Li, Rotating electro-osmotic flow of third grade fluids between two micro-parallel plates, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 470(2015) 240 – 247.
DOI: 10.1016/j.colsurfa.2015.01.081
Google Scholar
[11]
D.Q. Si, Y. J. Jian, L. Chang, Q.S. Liu, Unsteady rotating electro-osmotic flow through a slit microchannel, J. Mechanics, 32(2016) 603 – 611.
DOI: 10.1017/jmech.2016.9
Google Scholar
[12]
F. M. Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths, Eng. Sci. Techn. Intern. J. 20(2017) 1324-1333.
DOI: 10.1016/j.jestch.2017.08.003
Google Scholar
[13]
Z. Y. Xie, Y. J. Jian, Rotating electromagnetohydrodynamic flow of power-law fluids through a micro-parallel channel, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529(2017) 334 – 345.
DOI: 10.1016/j.colsurfa.2017.05.062
Google Scholar
[14]
J. Zheng, Y. Jian, Rotating electro-osmotic flow of two-layer fluids through a micro-parallel channel, International J. of Mechanical Sciences, 136(2018) 293 – 302.
DOI: 10.1016/j.ijmecsci.2017.12.039
Google Scholar
[15]
S. Marzougui, F. Mebarek-Oudina, A. Assia, M. Magherbi, Z. Shah and K. Ramesh, Entropy generation on magneto-convective flow of copper–water nanofluid in a cavity with chamfers. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09662-3.
DOI: 10.1007/s10973-020-09662-3
Google Scholar
[16]
M. Abdulhameed, D. Viera, R. Roslan, Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes, Computers& Mathematics with Applications, 74(10) (2017)2503 – 2519.
DOI: 10.1016/j.camwa.2017.07.040
Google Scholar
[17]
O. D. Makinde, N. Sandeep, T. M. Ajayi and I. L. Animasaun, Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution. International Journal of Nonlinear Sciences and Numerical Simulation 19(2) (2018) 93–106. http://dx.doi.org/10.1515/ijnsns-2016-0087.
DOI: 10.1515/ijnsns-2016-0087
Google Scholar
[18]
C. L. Berli, M.L. Olivares, Eelectrokinetic flow of non-Newtonian fluids in microchannels, Journal of Colloids and Interface Science, 320(2008) 582 – 589.
DOI: 10.1016/j.jcis.2007.12.032
Google Scholar
[19]
U. Khan, A. Zaib, & F. Mebarek-Oudina, Mixed Convective Magneto Flow of SiO2–MoS2/C2H6O2 Hybrid Nanoliquids Through a Vertical Stretching/Shrinking Wedge: Stability Analysis. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-020-04680-7.
DOI: 10.1007/s13369-020-04680-7
Google Scholar
[20]
P. Goswami, S. Chakraborty, Semi-analytical solutions for electroosmotic flows with interfacial slip in microchannel of complex cross-sectional shapes, Microfluidics and nanofluidics, 11(2011) 255 – 267.
DOI: 10.1007/s10404-011-0793-6
Google Scholar
[21]
O.D. Makinde and I.L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. International Journal of Thermal Sciences 109(2016) 159 – 171.
DOI: 10.1016/j.ijthermalsci.2016.06.003
Google Scholar
[22]
C. Zhao, C. Yang, On the competition between streaming potential effect and hydrodynamic slip effect in pressure-driven microchannel flows, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 386(2011) 191 – 194.
DOI: 10.1016/j.colsurfa.2011.06.014
Google Scholar
[23]
A. Matias, S. Sanchez, F. Mendez, O. Bautista, Influence of slip wall effect on a non-isothermal electroosmotic flow of a viscoelastic fluid, International Journal of Thermal Sciences, 98(2015) 352 - 363.
DOI: 10.1016/j.ijthermalsci.2015.07.026
Google Scholar
[24]
O.D. Makinde and I. L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, J. Molecular Liquids 221(2016) 733–743.
DOI: 10.1016/j.molliq.2016.06.047
Google Scholar
[25]
O. D. Makinde, N.Sandeep, I.L. Animasaun and M. S. Tshehla, Numerical Exploration of Cattaneo-Christov Heat Flux and Mass Transfer in Magnetohydrodynamic Flow over Various Geometries. Defect and Diffusion Forum 374(2017) 67 – 82.
DOI: 10.4028/www.scientific.net/ddf.374.67
Google Scholar
[26]
M. Rivero, S. Cuevas, Analysis of the slip condition in magnetohydrodynamic (MHD) micropumps, Sensors and Actuators B, 166–167 (2012) 884–892.
DOI: 10.1016/j.snb.2012.02.050
Google Scholar
[27]
J. Jang, S. S. Lee, Theoretical and experimental study of MHD (magnetohydrodynamic) micropump, Sensors and Actuators 80 (2000) 84–89.
DOI: 10.1016/s0924-4247(99)00302-7
Google Scholar
[28]
P. J. Wang, C.Y. Chang, M. L. Chang, Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump,20 (1)(2004) 115-121.
DOI: 10.1016/j.bios.2003.10.018
Google Scholar
[29]
Z. M. Odibat, C. Bertelle, M.A. Aziz-Alaoui, G. H.E. Duchamp, A multi-step differential transform method andapplication to non-chaotic or chaotic systems, Computers & Mathematics with Applications 59 (4) (2010)1462–1472.
DOI: 10.1016/j.camwa.2009.11.005
Google Scholar