Effects of Hydrodynamic Slip on Rotating Magneto-Electro-Osmotic Flow through a Periodic Microfluidic System

Article Preview

Abstract:

The study is concerned with the effects of slip velocity on a non-uniform rotating electroosmotic flow in a micro-channel. Electroosmotic driven fluid flow is obtained by the application of a potential electric field which describes the nonlinear Poisson-Boltzmann equation. The external electric potential is applied along the x and y directions which provides the necessary driving force for the electroosmotic flow. Two semi analytical techniques were employed to obtain the solution of the nonlinear Poisson-Boltzmann equation. The first method incorporates the complex normalized function into the Laplace transform and the second method is the combination of the Laplace transform and D’Alembert technique. Further, the complex normalized function became difficult to invert in closed form, hence we resort to the use of numerical procedure based on the Stehfest's algorithm. The graphical solutions to the axial velocities on both x and y components have been obtained and analyzed for the effects of the slip parameter and the amplitude of oscillation of the micro-channel walls. The solutions show that the rotating electroosmotic flow profile and the flow rate greatly depend on time, rotating parameter and the electrokinetic width. The results also indicate that the applied electric field and the electroosmotic force, play vital role on the velocity distribution in the micro-channel. The fact is that the solutions obtained in this study synthesize most of the solutions available in the previous studies. Finally, this study will be relevant in biological applications particularly in pumping mechanism to help transport substances within different parts of the systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-89

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Dutta, A. Beskok, T.C. Warburton, Electroosmotic flow control in complex micro geometries, J. Micro-electro-mech. Syst. 11 (1) (2002) 36–43.

DOI: 10.1115/imece2000-1148

Google Scholar

[2] A. Ajdari, Transverse electrokinetic and microfluidic effects in micropatterned channels: lubrication analysis for slab geometries, Phys. Rev. E 65 (1) (2001)016301.

DOI: 10.1103/physreve.65.016301

Google Scholar

[3] M. Takashima, The effect of rotation on electrohydrodynamic instability, Canadian J. Phy., 54 (1976) 342 – 347.

Google Scholar

[4] O. K. Koriko, K. S. Adegbie, A. S. Oke and I. L. Animasaun, Exploration of Coriolis force on motion of air over the upper horizontal surface of a paraboloid of revolution, Physica Scripta 95(3)(2020), 035210.

DOI: 10.1088/1402-4896/abc19e

Google Scholar

[5] G. Shit, A. Mondal, A. Sinha, P. Kundu, Effects of slip velocity on rotating electroosmotic flow in a slowly varying micro-channel, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489(2016) 249 – 255.

DOI: 10.1016/j.colsurfa.2015.10.036

Google Scholar

[6] Z. Y. Xie, Y. J. Jian, Rotating electroosmotic flow of power-law fluids at high zeta potentials, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 461(2014) 231 – 239.

DOI: 10.1016/j.colsurfa.2014.07.051

Google Scholar

[7] G. T. Adamu, A. M. Kwami, M. Abdulhameed, D. G. Yakubu, Effects of retardation time on non-Newtonian electro-osmatic flow in a micro-channel, Engineering fluid flows and Heat Transfer Analysis, 26(2020)39 – 52.

DOI: 10.4028/www.scientific.net/df.26.39

Google Scholar

[8] Y. Jian, D. Si, L. Chang, Q. Liu, Transient rotating electro-magneto-hydrodynamic micopumps between two infinite micro-parallel plates, Chemical Engineering Science, 134 (2015)12 - 22.

DOI: 10.1016/j.ces.2015.04.036

Google Scholar

[9] F. Mebarek-Oudina, A. Aissa, B. Mahanthesh, H. F. Oztop, Heat transport of magnetized Newtonian nanoliquids in an annular space between porous vertical cylinders with discrete heat source, Intern. Commun. In Heat Mass Transfer, 117 (2020)104737.

DOI: 10.1016/j.icheatmasstransfer.2020.104737

Google Scholar

[10] S. X. Li, Y. J. Jian, Z.Y. Xie, Q.S. Liu, F.Q. Li, Rotating electro-osmotic flow of third grade fluids between two micro-parallel plates, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 470(2015) 240 – 247.

DOI: 10.1016/j.colsurfa.2015.01.081

Google Scholar

[11] D.Q. Si, Y. J. Jian, L. Chang, Q.S. Liu, Unsteady rotating electro-osmotic flow through a slit microchannel, J. Mechanics, 32(2016) 603 – 611.

DOI: 10.1017/jmech.2016.9

Google Scholar

[12] F. M. Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths, Eng. Sci. Techn. Intern. J. 20(2017) 1324-1333.

DOI: 10.1016/j.jestch.2017.08.003

Google Scholar

[13] Z. Y. Xie, Y. J. Jian, Rotating electromagnetohydrodynamic flow of power-law fluids through a micro-parallel channel, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529(2017) 334 – 345.

DOI: 10.1016/j.colsurfa.2017.05.062

Google Scholar

[14] J. Zheng, Y. Jian, Rotating electro-osmotic flow of two-layer fluids through a micro-parallel channel, International J. of Mechanical Sciences, 136(2018) 293 – 302.

DOI: 10.1016/j.ijmecsci.2017.12.039

Google Scholar

[15] S. Marzougui, F. Mebarek-Oudina, A. Assia, M. Magherbi, Z. Shah and K. Ramesh, Entropy generation on magneto-convective flow of copper–water nanofluid in a cavity with chamfers. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09662-3.

DOI: 10.1007/s10973-020-09662-3

Google Scholar

[16] M. Abdulhameed, D. Viera, R. Roslan, Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes, Computers& Mathematics with Applications, 74(10) (2017)2503 – 2519.

DOI: 10.1016/j.camwa.2017.07.040

Google Scholar

[17] O. D. Makinde, N. Sandeep, T. M. Ajayi and I. L. Animasaun, Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution. International Journal of Nonlinear Sciences and Numerical Simulation 19(2) (2018) 93–106. http://dx.doi.org/10.1515/ijnsns-2016-0087.

DOI: 10.1515/ijnsns-2016-0087

Google Scholar

[18] C. L. Berli, M.L. Olivares, Eelectrokinetic flow of non-Newtonian fluids in microchannels, Journal of Colloids and Interface Science, 320(2008) 582 – 589.

DOI: 10.1016/j.jcis.2007.12.032

Google Scholar

[19] U. Khan, A. Zaib, & F. Mebarek-Oudina, Mixed Convective Magneto Flow of SiO2–MoS2/C2H6O2 Hybrid Nanoliquids Through a Vertical Stretching/Shrinking Wedge: Stability Analysis. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-020-04680-7.

DOI: 10.1007/s13369-020-04680-7

Google Scholar

[20] P. Goswami, S. Chakraborty, Semi-analytical solutions for electroosmotic flows with interfacial slip in microchannel of complex cross-sectional shapes, Microfluidics and nanofluidics, 11(2011) 255 – 267.

DOI: 10.1007/s10404-011-0793-6

Google Scholar

[21] O.D. Makinde and I.L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. International Journal of Thermal Sciences 109(2016) 159 – 171.

DOI: 10.1016/j.ijthermalsci.2016.06.003

Google Scholar

[22] C. Zhao, C. Yang, On the competition between streaming potential effect and hydrodynamic slip effect in pressure-driven microchannel flows, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 386(2011) 191 – 194.

DOI: 10.1016/j.colsurfa.2011.06.014

Google Scholar

[23] A. Matias, S. Sanchez, F. Mendez, O. Bautista, Influence of slip wall effect on a non-isothermal electroosmotic flow of a viscoelastic fluid, International Journal of Thermal Sciences, 98(2015) 352 - 363.

DOI: 10.1016/j.ijthermalsci.2015.07.026

Google Scholar

[24] O.D. Makinde and I. L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, J. Molecular Liquids 221(2016) 733–743.

DOI: 10.1016/j.molliq.2016.06.047

Google Scholar

[25] O. D. Makinde, N.Sandeep, I.L. Animasaun and M. S. Tshehla, Numerical Exploration of Cattaneo-Christov Heat Flux and Mass Transfer in Magnetohydrodynamic Flow over Various Geometries. Defect and Diffusion Forum 374(2017) 67 – 82.

DOI: 10.4028/www.scientific.net/ddf.374.67

Google Scholar

[26] M. Rivero, S. Cuevas, Analysis of the slip condition in magnetohydrodynamic (MHD) micropumps, Sensors and Actuators B, 166–167 (2012) 884–892.

DOI: 10.1016/j.snb.2012.02.050

Google Scholar

[27] J. Jang, S. S. Lee, Theoretical and experimental study of MHD (magnetohydrodynamic) micropump, Sensors and Actuators 80 (2000) 84–89.

DOI: 10.1016/s0924-4247(99)00302-7

Google Scholar

[28] P. J. Wang, C.Y. Chang, M. L. Chang, Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump,20 (1)(2004) 115-121.

DOI: 10.1016/j.bios.2003.10.018

Google Scholar

[29] Z. M. Odibat, C. Bertelle, M.A. Aziz-Alaoui, G. H.E. Duchamp, A multi-step differential transform method andapplication to non-chaotic or chaotic systems, Computers & Mathematics with Applications 59 (4) (2010)1462–1472.

DOI: 10.1016/j.camwa.2009.11.005

Google Scholar