[1]
B. Mahanthesh, Hall effect on two-phase laminar boundary layer flow of dusty liquid due to stretching of an elastic flat sheet. Mapana J. Sci. 16 (2017) 13-26.
DOI: 10.12723/mjs.42.2
Google Scholar
[2]
J. Mackolil, B. Mahanthesh, Sensitivity analysis of radiative heat transfer in Casson and nano fluids under diffusion-thermo and heat absorption effects, Eur. Phys. J. Plus 134 (2019) 619.
DOI: 10.1140/epjp/i2019-12949-6
Google Scholar
[3]
Z. Abdelmalek, B. Mahanthesh, M. F. M. Basir, M. Imtiaz, J. Mackolil, N. S. Khan, H. A. Nabwey, I. Tlili, Mixed radiated magneto Casson fluid flow with Arrhenius activation energy and Newtonian heating effects: Flow and sensitivity analysis, Alexandria Eng. J. 59 (2020) 3991-4011.
DOI: 10.1016/j.aej.2020.07.006
Google Scholar
[4]
H. Masoumi, M.S. Aghighi, A. Ammar, A. Nourbakhsh, Laminar natural convection of yield stress fluids in annular spaces between concentric cylinders, Int. J. Heat Mass Transf. 138 (2019) 1188–1198.
DOI: 10.1016/j.ijheatmasstransfer.2019.04.092
Google Scholar
[5]
E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, Int. Commun. Heat Mass Transf. 35 (2008) 657–665.
DOI: 10.1016/j.icheatmasstransfer.2007.11.004
Google Scholar
[6]
A. K. Hussein, Computational analysis of natural convection in a parallelogrammic cavity with a hot concentric circular cylinder moving at different vertical locations, Int. Commun. Heat Mass Transf. 46 (2013) 126–133.
DOI: 10.1016/j.icheatmasstransfer.2013.05.008
Google Scholar
[7]
E. Ghasemi, S. Soleimani, H. Bararnia, Natural convection between a circular enclosure and an elliptic cylinder using control volume based finite element method, Int. Commun. Heat Mass Transf. 39 (2012) 1035–1044.
DOI: 10.1016/j.icheatmasstransfer.2012.06.016
Google Scholar
[8]
GH.R. Kefayati, H. Tang, Lattice Boltzmann simulation of viscoplastic fluids on natural convection in an inclined enclosure with inner cold circular/elliptical cylinders (Part I: One cylinder), Int. J. Heat Mass Transf. 123 (2018) 1138-1162.
DOI: 10.1016/j.ijheatmasstransfer.2018.01.139
Google Scholar
[9]
S.A. Nadaa, M.A. Said, Effects of fins geometries, arrangements, dimensions and numbers on natural convection heat transfer characteristics in finned-horizontal annulus, Int. J. Therm. Sci. 137 (2019) 121–137.
DOI: 10.1016/j.ijthermalsci.2018.11.026
Google Scholar
[10]
J.R. Senapati, S.K. Dash, S. Roy, Numerical investigation of natural convection heat transfer from vertical cylinder with annular fins, Int. J. Therm. Sci. 111 (2017) 146–159.
DOI: 10.1016/j.ijthermalsci.2016.08.019
Google Scholar
[11]
S.M. Seyyedi, M. Dayyan, S. Soleimani, E. Ghasemi, Natural convection heat transfer under constant heat flux wall in a nanofluid filled annulus enclosure, Ain Shams Eng. J. 1 (2015) 267–280.
DOI: 10.1016/j.asej.2014.09.003
Google Scholar
[12]
K. Ragui, A. Boutra, Rachid Bennacer, N. Labsi, Y. K. Benkahla, Correlating heat and mass transfer coefficients for thermosolutal convection within a porous annulus of a circular shape: case of internal pollutants spreading, Heat Mass Transf. 54 (2018) 2061-2078.
DOI: 10.1007/s00231-018-2303-9
Google Scholar
[13]
W. Zhang, Y. Wei, H. Dou, Z. Zhu, Transient behaviors of mixed convection in a square enclosure with an inner impulsively rotating circular cylinder, Int. Commun. Heat Mass Transf. 98 (2018) 143–154.
DOI: 10.1016/j.icheatmasstransfer.2018.08.016
Google Scholar
[14]
W. Zhang, Y. Wei, X. Chen, H.-S. Dou, Z. Zhu, Partitioning effect on natural convection in a circular enclosure with an asymmetrically placed inclined plate, Int. Commun. Heat Mass Transf. 90 (2018) 11–22.
DOI: 10.1016/j.icheatmasstransfer.2017.10.015
Google Scholar
[15]
M. H. Matin, W. A. Khan, Laminar natural convection of non-Newtonian power-law fluids between concentric circular cylinders. Int. Commun. Heat Mass Transf. 43 (2013) 112–121.
DOI: 10.1016/j.icheatmasstransfer.2013.02.006
Google Scholar
[16]
H. Laidoudi, M. Helmaoui, M. Bouzit, A. Ghenaim, Natural convection of Newtonian fluids between two concentric cylinders of a special cross-sectional form, Therm. Sci., in press (2020). https://doi.org/10.2298/TSCI200201190L.
DOI: 10.2298/tsci200201190l
Google Scholar
[17]
M.A. Sheremet, I. Pop, Natural convection in a horizontal cylindrical annulus filled with a porous medium saturated by a nanofluid using Tiwari and Das' nanofluid model, Eur. Phys. J. Plus 130 (2015) 107.
DOI: 10.1140/epjp/i2015-15107-4
Google Scholar
[18]
M. Arbaban, M. R. Salimpour, Enhancement of laminar natural convective heat transfer in concentric annuli with radial fins using nanofluids, Heat Mass Transf. 51 (2015) 353-362.
DOI: 10.1007/s00231-014-1380-7
Google Scholar
[19]
A.M. Aly, Natural convection over circular cylinders in a porous enclosure filled with a nanofluid under thermo-diffusion effects, J. Taiwan Inst. Chem. Eng. 70 (2017) 88-103.
DOI: 10.1016/j.jtice.2016.10.050
Google Scholar
[20]
H. Laidoudi, Buoyancy-driven flow in annular space from two circular cylinders in tandem arrangement, Metal. Mater. Eng. 26 (2020) 87–102.
DOI: 10.30544/481
Google Scholar
[21]
S. Pandey, Y. G. Park, M. Y. Ha, An exhaustive review of studies on natural convection in enclosures with and without internal bodies of various shapes, Int. J. Heat Mass Transf. 138 (2019) 762–795.
DOI: 10.1016/j.ijheatmasstransfer.2019.04.097
Google Scholar
[22]
T.H. Kuehn, R.J. Goldstein, An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders, J. Fluid Mech. 74 (1976) 695–719.
DOI: 10.1017/s0022112076002012
Google Scholar
[23]
H. Laidoudi, H. Ameur, Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: Effect of various operating conditions, Therm. Sci. Eng. Prog. 20 (2020) 100731.
DOI: 10.1016/j.tsep.2020.100731
Google Scholar
[24]
H. Ameur, Investigation of the performance of V-cut turbines for stirring shear-thinning fluids in a cylindrical vessel, Period. Polytech. Mech. Eng. 64 (2020) 207–211.
DOI: 10.3311/ppme.13359
Google Scholar
[25]
H. Ameur, Newly modified curved-bladed impellers for process intensification: Energy saving in the agitation of Hershel-Bulkley fluids, Chem. Eng. Proc. Process Intensif. 154 (2020) 108009.
DOI: 10.1016/j.cep.2020.108009
Google Scholar
[26]
H. Ameur, Christophe Vial. Modified Scaba 6SRGT impellers for process intensification: cavern size and energy saving when stirring viscoplastic fluids, Chem. Eng. Proc. Process Intensif. 148 (2020) 107795.
DOI: 10.1016/j.cep.2019.107795
Google Scholar
[27]
H. Ameur, Effect of corrugated baffles on the flow and thermal fields in a channel heat exchanger, J. Appl. Comp. Mech. 6 (2020) 209-218.
Google Scholar
[28]
H. Ameur, Some modifications in the Scaba 6SRGT impeller to enhance the mixing characteristics of Hershel-Bulkley fluids, Food Bio. Proc. 117 (2019) 302-309.
DOI: 10.1016/j.fbp.2019.08.007
Google Scholar
[29]
H. Ameur, Effect of the baffle inclination on the flow and thermal fields in channel heat exchangers, Results in Eng. 3 (2019) 100021.
DOI: 10.1016/j.rineng.2019.100021
Google Scholar
[30]
H. Ameur, Data on the flow of shear thinning fluids in a rotating cylinder device, Data in Brief 25 (2019) 104084.
DOI: 10.1016/j.dib.2019.104084
Google Scholar
[31]
H. Ameur, Pressure drop and vortex size of power law fluids flow in branching channels with sudden expansion, J. Appl. Fluid Mech. 11 (2018) 1739-1749.
DOI: 10.29252/jafm.11.06.28831
Google Scholar
[32]
H. Ameur, Modifications in the Rushton turbine for mixing viscoplastic fluids, J. Food Eng. 233 (2018) 117-125.
DOI: 10.1016/j.jfoodeng.2018.04.005
Google Scholar