Investigation of the Natural Convection within a Cold Circular Enclosure Containing Three Equal-Sized Cylinders of Hot Surface

Article Preview

Abstract:

The present work is conducted for studying the natural convection in a circular enclosure that contains three equal-sized cylinders in tandem arrangement. The outer cylinder has a cold surface and the enclosure internals have hot surfaces. The relation between the density of the fluid and the temperature is treated by the Boussinesq approximation. The fluid used for the investigation is Newtonian and incompressible. The results present the roles of some non-dimensional parameters (Rayleigh (Ra) and Prandtl (Pr) numbers) on the buoyancy-driven flow and the convective heat transfer. The obtained results revealed an intensification of the v-velocity component in the annular space and an enhancement in the heat transfer rates with the rise of Rayleigh number.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-57

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Mahanthesh, Hall effect on two-phase laminar boundary layer flow of dusty liquid due to stretching of an elastic flat sheet. Mapana J. Sci. 16 (2017) 13-26.

DOI: 10.12723/mjs.42.2

Google Scholar

[2] J. Mackolil, B. Mahanthesh, Sensitivity analysis of radiative heat transfer in Casson and nano fluids under diffusion-thermo and heat absorption effects, Eur. Phys. J. Plus 134 (2019) 619.

DOI: 10.1140/epjp/i2019-12949-6

Google Scholar

[3] Z. Abdelmalek, B. Mahanthesh, M. F. M. Basir, M. Imtiaz, J. Mackolil, N. S. Khan, H. A. Nabwey, I. Tlili, Mixed radiated magneto Casson fluid flow with Arrhenius activation energy and Newtonian heating effects: Flow and sensitivity analysis, Alexandria Eng. J. 59 (2020) 3991-4011.

DOI: 10.1016/j.aej.2020.07.006

Google Scholar

[4] H. Masoumi, M.S. Aghighi, A. Ammar, A. Nourbakhsh, Laminar natural convection of yield stress fluids in annular spaces between concentric cylinders, Int. J. Heat Mass Transf. 138 (2019) 1188–1198.

DOI: 10.1016/j.ijheatmasstransfer.2019.04.092

Google Scholar

[5] E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, Int. Commun. Heat Mass Transf. 35 (2008) 657–665.

DOI: 10.1016/j.icheatmasstransfer.2007.11.004

Google Scholar

[6] A. K. Hussein, Computational analysis of natural convection in a parallelogrammic cavity with a hot concentric circular cylinder moving at different vertical locations, Int. Commun. Heat Mass Transf. 46 (2013) 126–133.

DOI: 10.1016/j.icheatmasstransfer.2013.05.008

Google Scholar

[7] E. Ghasemi, S. Soleimani, H. Bararnia, Natural convection between a circular enclosure and an elliptic cylinder using control volume based finite element method, Int. Commun. Heat Mass Transf. 39 (2012) 1035–1044.

DOI: 10.1016/j.icheatmasstransfer.2012.06.016

Google Scholar

[8] GH.R. Kefayati, H. Tang, Lattice Boltzmann simulation of viscoplastic fluids on natural convection in an inclined enclosure with inner cold circular/elliptical cylinders (Part I: One cylinder), Int. J. Heat Mass Transf. 123 (2018) 1138-1162.

DOI: 10.1016/j.ijheatmasstransfer.2018.01.139

Google Scholar

[9] S.A. Nadaa, M.A. Said, Effects of fins geometries, arrangements, dimensions and numbers on natural convection heat transfer characteristics in finned-horizontal annulus, Int. J. Therm. Sci. 137 (2019) 121–137.

DOI: 10.1016/j.ijthermalsci.2018.11.026

Google Scholar

[10] J.R. Senapati, S.K. Dash, S. Roy, Numerical investigation of natural convection heat transfer from vertical cylinder with annular fins, Int. J. Therm. Sci. 111 (2017) 146–159.

DOI: 10.1016/j.ijthermalsci.2016.08.019

Google Scholar

[11] S.M. Seyyedi, M. Dayyan, S. Soleimani, E. Ghasemi, Natural convection heat transfer under constant heat flux wall in a nanofluid filled annulus enclosure, Ain Shams Eng. J. 1 (2015) 267–280.

DOI: 10.1016/j.asej.2014.09.003

Google Scholar

[12] K. Ragui, A. Boutra, Rachid Bennacer, N. Labsi, Y. K. Benkahla, Correlating heat and mass transfer coefficients for thermosolutal convection within a porous annulus of a circular shape: case of internal pollutants spreading, Heat Mass Transf. 54 (2018) 2061-2078.

DOI: 10.1007/s00231-018-2303-9

Google Scholar

[13] W. Zhang, Y. Wei, H. Dou, Z. Zhu, Transient behaviors of mixed convection in a square enclosure with an inner impulsively rotating circular cylinder, Int. Commun. Heat Mass Transf. 98 (2018) 143–154.

DOI: 10.1016/j.icheatmasstransfer.2018.08.016

Google Scholar

[14] W. Zhang, Y. Wei, X. Chen, H.-S. Dou, Z. Zhu, Partitioning effect on natural convection in a circular enclosure with an asymmetrically placed inclined plate, Int. Commun. Heat Mass Transf. 90 (2018) 11–22.

DOI: 10.1016/j.icheatmasstransfer.2017.10.015

Google Scholar

[15] M. H. Matin, W. A. Khan, Laminar natural convection of non-Newtonian power-law fluids between concentric circular cylinders. Int. Commun. Heat Mass Transf. 43 (2013) 112–121.

DOI: 10.1016/j.icheatmasstransfer.2013.02.006

Google Scholar

[16] H. Laidoudi, M. Helmaoui, M. Bouzit, A. Ghenaim, Natural convection of Newtonian fluids between two concentric cylinders of a special cross-sectional form, Therm. Sci., in press (2020). https://doi.org/10.2298/TSCI200201190L.

DOI: 10.2298/tsci200201190l

Google Scholar

[17] M.A. Sheremet, I. Pop, Natural convection in a horizontal cylindrical annulus filled with a porous medium saturated by a nanofluid using Tiwari and Das' nanofluid model, Eur. Phys. J. Plus 130 (2015) 107.

DOI: 10.1140/epjp/i2015-15107-4

Google Scholar

[18] M. Arbaban, M. R. Salimpour, Enhancement of laminar natural convective heat transfer in concentric annuli with radial fins using nanofluids, Heat Mass Transf. 51 (2015) 353-362.

DOI: 10.1007/s00231-014-1380-7

Google Scholar

[19] A.M. Aly, Natural convection over circular cylinders in a porous enclosure filled with a nanofluid under thermo-diffusion effects, J. Taiwan Inst. Chem. Eng. 70 (2017) 88-103.

DOI: 10.1016/j.jtice.2016.10.050

Google Scholar

[20] H. Laidoudi, Buoyancy-driven flow in annular space from two circular cylinders in tandem arrangement, Metal. Mater. Eng. 26 (2020) 87–102.

DOI: 10.30544/481

Google Scholar

[21] S. Pandey, Y. G. Park, M. Y. Ha, An exhaustive review of studies on natural convection in enclosures with and without internal bodies of various shapes, Int. J. Heat Mass Transf. 138 (2019) 762–795.

DOI: 10.1016/j.ijheatmasstransfer.2019.04.097

Google Scholar

[22] T.H. Kuehn, R.J. Goldstein, An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders, J. Fluid Mech. 74 (1976) 695–719.

DOI: 10.1017/s0022112076002012

Google Scholar

[23] H. Laidoudi, H. Ameur, Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: Effect of various operating conditions, Therm. Sci. Eng. Prog. 20 (2020) 100731.

DOI: 10.1016/j.tsep.2020.100731

Google Scholar

[24] H. Ameur, Investigation of the performance of V-cut turbines for stirring shear-thinning fluids in a cylindrical vessel, Period. Polytech. Mech. Eng. 64 (2020) 207–211.

DOI: 10.3311/ppme.13359

Google Scholar

[25] H. Ameur, Newly modified curved-bladed impellers for process intensification: Energy saving in the agitation of Hershel-Bulkley fluids, Chem. Eng. Proc. Process Intensif. 154 (2020) 108009.

DOI: 10.1016/j.cep.2020.108009

Google Scholar

[26] H. Ameur, Christophe Vial. Modified Scaba 6SRGT impellers for process intensification: cavern size and energy saving when stirring viscoplastic fluids, Chem. Eng. Proc. Process Intensif. 148 (2020) 107795.

DOI: 10.1016/j.cep.2019.107795

Google Scholar

[27] H. Ameur, Effect of corrugated baffles on the flow and thermal fields in a channel heat exchanger, J. Appl. Comp. Mech. 6 (2020) 209-218.

Google Scholar

[28] H. Ameur, Some modifications in the Scaba 6SRGT impeller to enhance the mixing characteristics of Hershel-Bulkley fluids, Food Bio. Proc. 117 (2019) 302-309.

DOI: 10.1016/j.fbp.2019.08.007

Google Scholar

[29] H. Ameur, Effect of the baffle inclination on the flow and thermal fields in channel heat exchangers, Results in Eng. 3 (2019) 100021.

DOI: 10.1016/j.rineng.2019.100021

Google Scholar

[30] H. Ameur, Data on the flow of shear thinning fluids in a rotating cylinder device, Data in Brief 25 (2019) 104084.

DOI: 10.1016/j.dib.2019.104084

Google Scholar

[31] H. Ameur, Pressure drop and vortex size of power law fluids flow in branching channels with sudden expansion, J. Appl. Fluid Mech. 11 (2018) 1739-1749.

DOI: 10.29252/jafm.11.06.28831

Google Scholar

[32] H. Ameur, Modifications in the Rushton turbine for mixing viscoplastic fluids, J. Food Eng. 233 (2018) 117-125.

DOI: 10.1016/j.jfoodeng.2018.04.005

Google Scholar