[1]
S. Das, A. Ali, R.N. Jana, O.D. Makinde, Magnetohydrodynamic boundary layer slip flow of radiating and chemically reactive nanofluid over a stretching sheet with Newtonian heating. Journal of Nanofluids 5 (4), (2016) 606-616.
DOI: 10.1166/jon.2016.1234
Google Scholar
[2]
T.G. Motsumi and O.D. Makinde, Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate, Physica Scripta, 86 (2012), Article ID: 045003, 8 pages.
DOI: 10.1088/0031-8949/86/04/045003
Google Scholar
[3]
P.M. Krishna, N. Sandeep, R.P. Sharma, O.D. Makinde, Thermal radiation effect on 3D slip motion of AlCu-Water and Cu-Water nanofluids over a variable thickness stretched surface. Defect and Diffusion Forum, 377, (2017) 141-154.
DOI: 10.4028/www.scientific.net/ddf.377.141
Google Scholar
[4]
N.Y.A. Elazem, A. Ebaid and E.H. Aly, Radiation Effect of MHD on Cu-water and Ag-water Nanofluids Flow over a Stretching Sheet: Numerical Study, J. Appl. Computat. Math., 4(4), (2015) 1-8.
DOI: 10.4172/2168-9679.1000235
Google Scholar
[5]
S. Naramgari and C. Sulochana, Dual solutions of Radiative MHD nanofluid flow over an exponentially stretching sheet with heat generation/absorption, Appl Nanosci, 6 (2016), 131–139.
DOI: 10.1007/s13204-015-0420-z
Google Scholar
[6]
M. Lavanya, B.M. Sreedhar, R.G. Venkata and S. Suneetha, Radiation effects on MHD boundary layer flow of a nanofluid past an exponential permeable stretching sheet embedded in a porous medium, Asian Journal of Science and Technology, 7(4), (2016) 2815-2824.
DOI: 10.37896/jxu14.5/518
Google Scholar
[7]
N. Kishan, C. Kalyani and M.C.K. Reddy, MHD Boundary Layer Flow of a Nanofluid over an Exponentially Permeable Stretching Sheet with radiation and heat Source/Sink, Trans. Phenom. Nano Micro Scales, 4(1), (2016). 44-51.
DOI: 10.1002/htj.21077
Google Scholar
[8]
S. Das, R.N. Jana and O.D. Makinde, Transient natural convection in a vertical channel filled with nanofluids in the presence of thermal radiation, Alexandria Engineering Journal, 55, (2016) 253–262.
DOI: 10.1016/j.aej.2015.10.013
Google Scholar
[9]
S. Anuradha and M. Yegammai, MHD Radiative Boundary Layer Flow of Nanofluid Past a Vertical Plate with Effects of Binary Chemical Reaction and Activation Energy, Global Journal of Pure and Applied Mathematics, 13(9), (2017) 6377-6392.
Google Scholar
[10]
Z. Shah, E. Bonyah, S. Islam and T. Gul, Impact of thermal radiation on electrical MHD rotating flow of Carbon nanotubes over a stretching sheet, AIP Advances, 9, (2019); 015115.
DOI: 10.1063/1.5048078
Google Scholar
[11]
F. Mabood and K. Das,.Outlining the impact of melting on MHD Casson fluid flow past a stretching sheet in a porous medium with radiation, Heliyon, 5 (2019) e01216,.
DOI: 10.1016/j.heliyon.2019.e01216
Google Scholar
[12]
M. Madhu, B.J. Gireesha and K. Naikoti, MHD Boundary Layer Flow and Heat Transfer to Sisko Nanofluid Past a Nonlinearly Stretching Sheet with Radiation, International Journal of Applications and Applied Mathematics, 4(2019), 1 – 15.
Google Scholar
[13]
T. Gangaiah, N. Saidulu, and A.V. Lakshmi, Influence of Thermal Radiation on MHD Tangent Hyperbolic Fluid Flow with Zero Normal Flux of Nanoparticles over an Exponential Stretching Sheet, International Journal of Applications and Applied Mathematics, 4(2019), 16 – 30.
DOI: 10.1166/jon.2018.1508
Google Scholar
[14]
K.R. Madhura and S.S. Iyenga, Analysis of Heat Transfer and Thermal Radiation on Natural Convective Flow of Fractional Nanofluids, Journal of Nanofluids, 8(2019), 1–12.
DOI: 10.1166/jon.2019.1645
Google Scholar
[15]
N. Saidulu, T. Gangaiah. and A.V. Lakshmi, Impact of Thermal Radiation on MHD Flow of Tangent Hyperbolic Nanofluid Over a Nonlinear Stretching Sheet with Convective Boundary Condition, J. Nanofluids, 8(2019), 41–50.
DOI: 10.1166/jon.2019.1556
Google Scholar
[16]
M.K. Nayak, S. Shaw, O.D. Makinde and A.J. Chamkha, Investigation of Partial Slip and Viscous Dissipation Effects on the Radiative Tangent Hyperbolic Nanofluid Flow Past a Vertical Permeable Riga Plate with Internal Heating: Bungiorno Model, J. Nanofluids, 8 (2019).51–62.
DOI: 10.1166/jon.2019.1576
Google Scholar
[17]
C.T. Srinivasa, J.K. Singh, B.J. Gireesha and M. Archana, Heat and Mass Transfer Analysis of Casson Nanofluid Flow Past a Static/Moving Vertical Plate with Heat Radiation, J. Nanofluids, 8 (2019), 543–549.
DOI: 10.1166/jon.2019.1618
Google Scholar
[18]
P. Dulal and R. Netai, Role of Brownian Motion and Nonlinear Thermal Radiation on Heat Transfer of a Casson Nanofluid Over Stretching Sheet with Slip Velocity and Non-Uniform Heat Source/Sink, J. Nanofluids, 8 (2019), 556–568.
DOI: 10.1166/jon.2019.1604
Google Scholar
[19]
C.J. Etwire, I.Y. Seini, M. Rabiu, O.D. Makinde,. Effects of Viscoelastic Oil-Based Nanofluids on a Porous Nonlinear Stretching Surface with Variable Heat Source/Sink. Defect and Diffusion Forum - Computational Analysis of Heat Transfer in Fluids and Solids. 387 (2018) 260-272.
DOI: 10.4028/www.scientific.net/ddf.387.260
Google Scholar
[20]
C.J. Etwire, I.Y. Seini, M. Rabiu, O.D. Makinde, Combined Effects of Variable Viscosity and Thermal Conductivity on Dissipative Flow of Oil-Based Nanofluid over a Permeable Vertical Surface. Diffusion Foundations 16, (2018) 158-176.
DOI: 10.4028/www.scientific.net/df.16.158
Google Scholar
[21]
C.J. Etwire, I.Y. Seini, M. Rabiu, Effects of Oil-Based Nanofluid on a Stretching Surface with Variable Suction and Thermal Conductivity. Diffusion Foundations 11 (2017) 99-109.
DOI: 10.4028/www.scientific.net/df.11.99
Google Scholar
[22]
H.C. Brinkman, Viscosity of concentrated suspensions and solutions. J. Chem. Phys., 20, (1952) .571–581.
Google Scholar
[23]
J.C. Maxwell, A Treatise on Electricity and Magnetism. UK: Clarendon, (1973).
Google Scholar
[24]
C.Y. Wang, Free convection on a vertical stretching surface, Journal of Applied Mathematics and Mechanics/Zeitschriftfur AngewandteMathematik und Mechanik, 69(11), (1989) pp.418-420.
DOI: 10.1002/zamm.19890691115
Google Scholar
[25]
R.S.R. Gorla and I. Sidawi, Free convection on a vertical stretching surface with suction and blowing, Applied Scientific Research, 52(3), (1994) pp.247-257.
DOI: 10.1007/bf00853952
Google Scholar