Quadratic Mixed Convection Stagnation-Point Flow in Hydromagnetic Casson Nanofluid over a Nonlinear Stretching Sheet with Variable Thermal Conductivity

Article Preview

Abstract:

An analysis of nonlinear mixed convection transport of hydromagnetic Casson nanofluid over a nonlinear stretching sheet near a stagnation point is deliberated in this study. The flow is confined in a porous device in the presence of thermophoresis, Ohmic heating, non-uniform heat source with temperature-dependent thermal conductivity associated with haphazard motion of tiny particles. The transport equations are translated from nonlinear partial differential equations into ordinary ones via similarity transformation technique and subsequently tackled with shooting method coupled with Runge-Kutta Fehlberg algorithm. The significant contributions of the embedded parameters on the dimensionless quantities are graphically depicted and deliberated while the numerical results strongly agree with related published studies in the limiting conditions. It is found that a rise in the magnitude of Casson fluid parameter decelerates the fluid flow while enhancing the viscous drag and thermal profiles. The inclusion of the nonlinear convection term aids fluid flow whereas heat transfer reduces with growth in the thermophoresis and Brownian motion terms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-109

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.Y. Seini and O.D. Makinde:International Journal of Numerical Methods for Heat & Fluid Flow Vol.24(3) (2014), 643-653.

Google Scholar

[2] K. Hiemenz: Dingerls Polytech. J. Vol. 326 (1911), 321-324.

Google Scholar

[3] D. Pal and S. Chatterjee:Mathematical Modelling and Analysis Vol. 17(4) (2012), 498-518.

Google Scholar

[4] E.O. Fatunmbi and A. Adeniyan:Journal of Advances in Mathematics and Computer Science Vol. 26(1) (2018), 1-19.

Google Scholar

[5] Khalil-Ur-Rehman, M. Y. Malik and O. D. Makinde:Journal of King Saud University-Science Vol. 30 (2018), 44-?49.

Google Scholar

[6] I.L. Animasaun:Journal of the Egyptian Mathematical Society Vol. 25 (2017), 79?-95.

Google Scholar

[7] M.M. Bhatti and M.M Rashidi:Int. J. Appl. Comput. Math (2015), 1-15 (2016) DOI 10.1007/s40819-016-0193-4.

Google Scholar

[8] S.A. Bakara, N.M. Arifin, R. Nazar, F.M. Alia and I. and Pop:Frontiers in Heat and Mass Transfer (FHMT) Vol. 7(38) (2016).

Google Scholar

[9] D. Mythili and R. Sivaraj:Journal of Molecular Liquids Vol. 216 (2016), 466?75.

Google Scholar

[10] N. Casson: Rheology of Disperse Systems, Pergamon (1959), 84-02.

Google Scholar

[11] S. Nadeem, R.U. Haq, and C. Lee:Scientia Iranica B Vol. 19(6) (2012), 1550-1553.

Google Scholar

[12] C.S.K. Raju, N. Sandeep and S. Saleem: Engineering Science and Technology, an International Journal Vol. 19 (2016), 875-887.

Google Scholar

[13] J.K. Singh, G.S. Seth and S.G. Begum:Multidiscipline Modeling in Materials and Structures Vol. 14(2) (2018), 236-260.

Google Scholar

[14] S.U.S. Choi and J.A. Eastman:No. ANL/MSD/CP-84938; CONF-951135-29 (1995), Argonne National Lab.,IL (United States).

Google Scholar

[15] U. Khan, A. Zaib and F. Mebarek-Oudina:Arabian Journal for Science and Engineering, (2020), 1-13, doi.org/10.1007/s13369-020-04680-7.

Google Scholar

[16] F. Mebarek-Oudina:Heat Transfer—Asian Res. (2018), 1-13,.

Google Scholar

[17] A. Alsaedi, T. Hayat, S. Qayyum and R. Yaqoob:Computer Methods and Programs in Biomedicine Vol. 186 (2020), 1-12.

Google Scholar

[18] H.M. Abolbashari, N. Fredoonimehr, F. and M.M Rashidi:Advanced Powder Technology (2015), 1-12, http://dx.doi.org/10.1016/j.apt.2015.01.003.

Google Scholar

[19] A. Hafeez, M. Khan, A. Ahmed and J. Ahmed:Appl. Math. Mech.-Engl. Ed. (2020) https://doi.org/10.1007/s10483-020-2629-9.

Google Scholar

[20] E. O. Fatunmbi, A. T. Adeosun: International Communication in Heat and Mass Transfer Vol. 119, (2020), 1-10.

Google Scholar

[21] O.D. Makinde and I.L. Animasaun:Journal of Molecular Liquids, 221 (2016) 733-743.

Google Scholar

[22] K. Al-Khaled, S.U. Khan and I. Khan:Heliyon, Vol. 6 (2020), 1-7.

Google Scholar

[23] E.O. Fatunmbi and A. Adeniyan:Results in Engineering Vol. 6 (2020), 1-10.

Google Scholar

[24] M.I. Khan, T. Hayat, M.I. Khan and A. Alsaedi:International Communications in Heat and Mass Transfer V0l. 91 (2018), 216-224.

DOI: 10.1016/j.icheatmasstransfer.2017.11.001

Google Scholar

[25] J. Raza, F. Mebarek-Oudina, P. Ram and S. Sharma:Defect and Diffusion Forum Vol. 401, (2019), 92-106.

DOI: 10.4028/www.scientific.net/ddf.401.92

Google Scholar

[26] L.J. Crane:Communicatios Breves Vol. 21 (1970), 645-647.

Google Scholar

[27] T. E. Akinbobola ans S.S. Okoya:Journal of the Nigerian Mathematical Society Vol. 34 (2015), 331-342.

Google Scholar

[28] M.G. Reddy, M.V.V.N.L. Sudha Rani, O.D. Makinde:Diffusion Foundations, Vol. 11 (2017), 57-71.

Google Scholar

[29] Gupta, P. S. and A.S. Gupta:Applied Mathematics and Computation Vol. 184, (1977), 864-873.

Google Scholar

[30] R. Cortell:Applied Mathematics and Computation Vol. 184 (2007), 864-873.

Google Scholar

[31] E. Magyari and B. Keller:Journal of Physics Vol. 32, 577-585.

Google Scholar

[32] E.O. Fatunmbi, S.S. Okoya and O.D. Makinde:Diffusion Foundations Vol. 26 (2020), 63-77.

Google Scholar

[33] M. Waqas, M. Farooq, M.J. Khan, A. Alsaedi, T. Hayat and T. Yasmeen:International Journal of Heat and Mass Transfer Vol. 102, (2016), 766-772.

DOI: 10.1016/j.ijheatmasstransfer.2016.05.142

Google Scholar

[34] V.N. Korovkin and A.P. Andrievskii:Journal of Engineering Physics and Thermophysics Vol. 73(2) (2000), 1-7.

Google Scholar

[35] K.V. Prasad, V. Vajravelu and R. A. Van-Gorder:Acta Mech Vol. 220 (2011), 139-154.

Google Scholar

[36] P.R. Athira, B. Mahanthesh, B.J. Gireesha, O.D. Makinde:Defect and Diffusion Vol. 387 (2018), 428-441.

Google Scholar

[37] I.C. Mandal, and S. Mukhopadhyay:Mechanics of Advanced Materials and Structures, 0(0) (2018), 1-7.

Google Scholar

[38] M. M. Rashidi M., Ali, B., Rostami, P., Rostami and G. Xie:Mathematical Problems in Engineering, Vol 2015 (2015), 1-12.

Google Scholar

[39] F. Mabood, W.A. Khan, A.I.M. Ismail:Journal of Magnetism and Magnetic Materials Vol. 374 (2015), 569?76.

Google Scholar

[40] T. C. Chiam:Int. J. Engng SCi. Vol.33(3) (1995), 429-435.

Google Scholar

[41] S. P. Anjalidevi, M. Thiyagarajan: Heat and Mass Transfer Vol. 38 (2002), 723-726.

Google Scholar

[42] R. Bhargava, H. Chandra:arXiv preprint arXiv Vol. 711.03579, (2017), 1-19.

Google Scholar

[43] A.B. Jafar, S. Shafie and I. Ullah:Heliyon Vol. 6 (2020), 1-9.

Google Scholar

[44] K. Jabeen, M. Mushtaq and R.M. Akram:Mathematical Problems in Engineering Vol.2020 (2020), 1-9.

Google Scholar

[45] M.M. Rahman, A. Aziz and M.A. Al-Lawatia:International Journal of Thermal Sciences Vol. 49 (2010), 1-10.

Google Scholar

[46] E.O. Fatunmbi and S.S. Okoya:Advances in Materials Science and Engineering Vol. 2020 (2020), 1-11.

Google Scholar

[47] E.O. Fatunmbi, H. A. Ogunseye and P. Sibanda:International Communication in Heat and Mass Transfer Vol. 115 (2020), 1-10.

Google Scholar

[48] L. Xu and E.W.M. Lee: Abst Appl Anal Vol. 2013 (2013), 1-6.

Google Scholar

[49] B.S. Attili, M.L. Syam:Chaos, Solitons and Fractals Vol. 35 (2008), 895-03.

Google Scholar

[50] B. Mahanthesh, B.J. Gireesha, R.S. R. Gorla and O.D. Makinde:Neural Comput & Applic Vol. 30 (2018), 1557-567.

Google Scholar

[51] L.J. Grubka and K.M. Bobba:Journal of Heat Transfer Vol. 107 (1985), 248-250.

Google Scholar